In honor of Carl Gauss [No Calc!]

Algebra Level 1

What is

1 + 2 + 3 + 4 + 5 + + 98 + 99 + 100 = ? \large1+2+3+4+5+\cdots+98+99+100=?

or

n = 1 100 n = ? \large\sum_{n=1}^{100} n=?

Do not use a calculator, not even G o o g l e ! \text{Do not use a calculator, not even} \, \Large\color{#3D99F6}{\text{G}}\color{#D61F06}{\text{o}}\color{#CEBB00}{\text{o}}\color{#3D99F6}{\text{g}}\color{#20A900}{\text{l}}\color{#D61F06}{\text{e}}\color{#333333}{!}


The answer is 5050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Viki Zeta
Jul 14, 2016

Let sum to n terms be S. S n = 1 + 2 + 3 + + n (+) S n = n + ( n 1 ) + ( n 2 ) + + 1 2 S n = ( n + 1 ) + ( n 1 + 2 ) + ( n 2 + 3 ) + + ( n + 1 ) 2 S n = ( n + 1 ) + ( n + 1 ) + ( n + 1 ) + + ( n + 1 ) 2 S n = n 2 + n ( 1 ) 2 S n = n ( n + 1 ) S n = 1 2 n ( n + 1 ) (or) S = n ( n + 1 ) 2 On substituting n = 100, S 100 = 100 ( 100 + 1 ) 2 = 100 ( 101 ) 2 = 50 ( 101 ) S 100 = 5050 \text{Let sum to n terms be S.} \\ \quad\quad S_n = 1 + 2 + 3 + \ldots + n \\ \text{(+) } S_n = n + (n-1) + (n-2) + \ldots + 1 \\ \implies 2S_n = (n+1) + (n-1+2) + (n-2+3) + \ldots + (n+1) \\ \implies 2S_n = (n+1) + (n+1) + (n+1) + \ldots + (n+1) \\ \implies 2S_n = n^2 + n(1)\\ \implies 2S_n = n(n+1) \\ \implies S_n = \frac{1}{2} n(n+1) \text{ (or) } S = \dfrac{n(n+1)}{2} \\ \text{On substituting n = 100, } \\ S_{100} = \dfrac{100(100+1)}{2} = \dfrac{100(101)}{2} = 50(101) \\ \implies S_{100} = \fbox{5050}

1+100=101 2+99=101 3+98=101 ...... ...... ..... 50+51=101

So 101×50=5050 Gauss wins

Sanyam Goel
Jul 14, 2016

sum of 1 st 'n' natural numbers is given by n(n+1)/2...

so sum of 1 st 100 natural numbers

= 100*101/2= 5050.

Sn = n/2 {2a + (n-1)d} Just put n = 100 , a = 1 and d =1 . Surprisingly carl gauss did it when he was just 4

Brittany Marie
Sep 16, 2016

10 1's + 10 2's + 10 3's, ect up until nine. Then 10 20's + 10 30's + 10 40's, etc until 90. So 10+20+30+40+50+60+70+80+90+100+200+300+400+500+600+700+800+900= 5050

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...