In search for the maximum

Algebra Level 3

For positive reals a a , b b , and c c , find the maximum value of

3 ( a + b + c ) + 100 3 a 2 + 144 3 b 2 + 196 3 c 2 3(a+b+c)+\sqrt {100-3a^2}+\sqrt {144-3b^2}+\sqrt {196-3c^2}


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 30, 2020

Writing 3 a = 10 cos α 3 b = 12 cos β 3 c = 14 cos γ \sqrt{3}a = 10\cos\alpha \hspace{1cm} \sqrt{3}b = 12\cos\beta \hspace{1cm} \sqrt{3}c = 14\cos\gamma the expression can be written as 20 sin ( α + 1 3 π ) + 24 sin ( β + 1 3 π ) + 28 sin ( γ + 1 3 π ) 20\sin(\alpha+\tfrac13\pi) + 24\sin(\beta + \tfrac13\pi) + 28\sin(\gamma + \tfrac13\pi) which clearly takes its maximum value of 72 \boxed{72} when α = β = γ = 1 6 π \alpha = \beta = \gamma = \tfrac16\pi , so when ( a , b , c ) = ( 5 , 6 , 7 ) (a,b,c) = (5,6,7) .

Chew-Seong Cheong
Apr 29, 2020

Splitting the terms with a a , b b , and c c separately and apply Cauchy-Schwarz inequality as follows:

3 a + 100 3 a 2 = a + a + a + 100 3 a 2 By Cauchy-Schwarz inequality ( a + a + a + 100 3 a 2 ) 2 4 ( a 2 + a 2 + a 2 + 100 3 a 2 ) = 400 3 a + 100 3 a 2 20 Equality occurs when a = 5 \begin{aligned} 3a + \sqrt{100-3a^2} & = a + a + a + \sqrt{100-3a^2} & \small \blue{\text{By Cauchy-Schwarz inequality}} \\ \left(a+a+a+\sqrt{100-3a^2} \right)^2 & \le 4 \left(a^2 + a^2 + a^2 + 100 - 3a^2 \right) = 400 \\ \implies 3a + \sqrt{100-3a^2} & \le 20 & \small \blue{\text{Equality occurs when }a = 5 } \end{aligned}

Similarly, 3 b + 144 3 b 2 24 3b + \sqrt{144-3b^2} \le 24 and 3 c + 196 3 c 2 28 3c + \sqrt{196-3c^2} \le 28 and equalities occur when b = 6 b=6 and c = 7 c=7 respectively. Therefore,

3 ( a + b + c ) + 100 3 a 2 + 144 3 b 2 + 196 3 c 2 20 + 24 + 28 = 72 3(a+b+c) + \sqrt{100-3a^2} + \sqrt{144-3b^2} + \sqrt{196-3c^2} \le 20+24+28 = \boxed{72}

Sir, also mention that the equality holds for ( a , b , c ) = ( 5 , 6 , 7 ) \left(a,b,c\right)=\left(5,6,7\right)

Aaghaz Mahajan - 1 year, 1 month ago

Log in to reply

Yes, thanks.

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...