1 + 2 1 . ( 5 . 1 ! ) 2 1 . 4 + 3 1 . ( 5 2 . 2 ! ) 2 1 . 4 . 6 . 9 + 4 1 . ( 5 3 . 3 ! ) 2 1 . 4 . 6 . 9 . 1 1 . 1 4 + ⋯ = a π b 2 2 b − b
Above relation holds for coprime positive integers a and b . Find 5 a − 8 b
Try this also part 1
The problem is original
Relevant wiki
Let's have a look at this
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Above series is n = 0 ∑ ∞ ( 2 ) n n ! ( 5 4 ) n ( 5 1 ) n = 2 F 1 ( 5 4 , 5 1 ; 2 ; 1 ) ( a ) n = k = 0 ∏ n − 1 ( a + k ) 2 F 1 ( a , b ; c ; 1 ) = Γ ( c − a ) Γ ( c − b ) Γ ( c ) Γ ( c − a − b ) Here it is 2 F 1 ( 5 4 , 5 1 ; 2 ; 1 ) = 4 Γ ( 5 1 ) Γ ( 5 4 ) 2 5 = 4 π 2 5 sin ( 5 π ) sin ( 5 π ) = 8 5 − 5 . and Γ ( a ) Γ ( 1 − a ) = sin ( π a ) π
It is 8 π 2 5 2 5 − 5 Answer is 5 a − 8 b = 0
Proof
Take z = 1 , then it becomes 2 F 1 ( a , b ; c , 1 ) = Γ ( b ) Γ ( c − b ) Γ ( c ) ∫ 0 1 t b − 1 ( 1 − t ) c − b − a − 1 d t = Γ ( b ) Γ ( c − b ) Γ ( c ) B ( b , c − b − a ) = Γ ( c − a ) Γ ( c − b ) Γ ( c ) Γ ( c − a − b )