This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
why are you doing these problems at 17 years of age? Are you aspiring to clear jee?
Problem Loading...
Note Loading...
Set Loading...
The above series can be transformed into a closed form n = 0 ∑ ∞ ( 1 ) n . n ! ( 2 1 ) n ( 2 1 ) n ( 2 1 ) n = 2 F 1 ( 2 1 , 2 1 ; 1 ; 2 1 )
2 F 1 ( a , b ; c ; z ) = Γ ( c − b ) Γ ( b ) Γ ( c ) ∫ 0 1 t b − 1 ( 1 − t ) c − b − 1 ( 1 − z t ) − a d t
Here z = 2 1 and a = 2 1 , b = 2 1 , c = 1
Then it is 2 F 1 ( 2 1 , 2 1 ; 1 ; 2 1 ) = Γ 2 ( 2 1 ) 2 Γ ( 1 ) ∫ 0 1 t − 1 / 2 ( 1 − t ) − 1 / 2 ( 2 − t ) − 1 / 2 d t
Using ∫ ϕ ζ f ( x ) d x = ∫ ϕ ζ f ( ϕ + ζ − x ) d x
The integral becomes ⟹ π 2 ∫ 0 1 t − 1 / 2 ( 1 − t ) − 1 / 2 ( 1 + t ) − 1 / 2 d t = π 2 ∫ 0 1 ( 1 − t 2 ) − 1 / 2 t − 1 / 2 d t
Take t 2 = u the integral becomes 2 π 1 ∫ 0 1 u − 4 3 ( 1 − u ) − 1 / 2 d u = 2 π 1 B ( 4 1 , 2 1 ) ⟹ 2 π 1 Γ 2 ( 4 3 ) Γ ( 4 3 ) Γ ( 4 1 ) Γ ( 2 1 ) = Γ 2 ( 4 3 ) π