In search of π π [ P : 3 P:3 ]

Calculus Level pending

1 + 1 2 ( 1 2.1 ! ) 2 + 1 4 ( 1.3 2 2 . 2 ! ) 2 + 1 8 ( 1.3.5 2 3 . 3 ! ) 2 + = π Γ 2 ( a b ) \mathrm{1+\frac{1}{2} (\frac{1}{2.1!})^2 + \frac{1}{4} (\frac{1.3}{2^2 .2!})^2 +\frac{1}{8}(\frac{1.3.5}{2^3 .3!})^2 +\cdots = \frac{\sqrt{π}}{\Gamma^2{(\frac{a}{b})}}}

Above expression holds for coprime positive integers \textrm{Above expression holds for coprime positive integers } a \mathrm{a} and \textrm{and } b \mathrm{b} , find \textrm{find } ( a + b ) \mathrm{(a+b)}

Part 1 . And \textrm{ And} Part 2

The problem is original \textrm{The problem is original}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Jan 12, 2021

The above series can be transformed into a closed form \textrm{The above series can be transformed into a closed form} n = 0 ( 1 2 ) n ( 1 2 ) n ( 1 ) n . n ! ( 1 2 ) n = 2 F 1 ( 1 2 , 1 2 ; 1 ; 1 2 ) \color{#20A900}\sum_{n=0}^∞ \frac{(\frac{1}{2})_n (\frac{1}{2})_n}{(1)_n .n!}(\frac{1}{2})^n = _2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})

2 F 1 ( a , b ; c ; z ) = Γ ( c ) Γ ( c b ) Γ ( b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t _2F_1(a,b;c;z)= \frac{\Gamma{(c)}}{\Gamma{(c-b)}\Gamma{(b)}} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a}dt

Here \textrm{Here } z = 1 2 z= \frac{1}{2} and \textrm{and} a = 1 2 a=\frac{1}{2} , b = 1 2 b= \frac{1}{2} , c = 1 c=1

Then it is \textrm{Then it is} 2 F 1 ( 1 2 , 1 2 ; 1 ; 1 2 ) = 2 Γ ( 1 ) Γ 2 ( 1 2 ) 0 1 t 1 / 2 ( 1 t ) 1 / 2 ( 2 t ) 1 / 2 d t \color{#3D99F6}_2F_1(\frac{1}{2} ,\frac{1}{2} ;1;\frac{1}{2})= \frac{\sqrt{2} \Gamma{(1)} }{\Gamma^2 {(\frac{1}{2})}} \int_0^1 t^{-1/2}(1-t)^{-1/2} (2-t)^{-1/2} dt

Using \textrm{Using} ϕ ζ f ( x ) d x = ϕ ζ f ( ϕ + ζ x ) d x \int_{\phi}^{\zeta} f(x) dx = \int_{\phi}^{\zeta}f(\phi+\zeta-x)dx

The integral becomes \textrm{The integral becomes } 2 π 0 1 t 1 / 2 ( 1 t ) 1 / 2 ( 1 + t ) 1 / 2 d t = 2 π 0 1 ( 1 t 2 ) 1 / 2 t 1 / 2 d t \implies \frac{\sqrt{2}}{π} \int_0^1 t^{-1/2} (1-t)^{-1/2} (1+t)^{-1/2} dt = \frac{\sqrt{2}}{π}\int_0^1 (1-t^2)^{-1/2} t^{-1/2} dt

Take \textrm{Take} t 2 = u t^2 = u the integral becomes \textrm{the integral becomes} 1 2 π 0 1 u 3 4 ( 1 u ) 1 / 2 d u = 1 2 π B ( 1 4 , 1 2 ) \frac{1}{\sqrt{2}π}\int_0^1 u^{-\frac{3}{4}} (1-u)^{-1/2} du = \frac{1}{\sqrt{2}π} \Beta(\frac{1}{4} , \frac{1}{2}) 1 2 π Γ ( 3 4 ) Γ ( 1 4 ) Γ ( 1 2 ) Γ 2 ( 3 4 ) = π Γ 2 ( 3 4 ) \color{#E81990}\implies \frac{1}{\sqrt{2}π} \frac{\Gamma{(\frac{3}{4})}\Gamma{(\frac{1}{4})} \Gamma{(\frac{1}{2})}}{\Gamma^2{(\frac{3}{4})}}= \frac{\sqrt{π}}{\Gamma^2{(\frac{3}{4})}}

why are you doing these problems at 17 years of age? Are you aspiring to clear jee?

Sid Patak - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...