In search of π π

Calculus Level 4

1 + 1 2 ( 1 2 1 ! ) 2 + 1 3 ( 1 3 2 2 2 ! ) 2 + 1 4 ( 1 3 5 2 3 3 ! ) 2 + = a b π 1+\frac{1}{2} \left(\frac{1}{2 \cdot 1!}\right)^2 +\frac{1}{3} \left(\frac{1 \cdot 3}{2^2 \cdot 2!}\right)^2 + \frac{1}{4} \left(\frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!}\right)^2 +\cdots=\frac{a}{bπ}

The equation above holds for positive coprime integers a a and b b . Find a 4 b a-4b .

The problem is original

Relevant wiki

Try Part 2

Let's have a look at this


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The series is n 0 ( 1 2 ) n 2 ( 2 ) n n ! = 2 F 1 ( 1 2 , 1 2 ; 2 ; 1 ) \large \sum_{n≥0}^∞ \frac{(\frac{1}{2})^2_n }{(2)_n n!} = _2F_1 (\frac{1}{2},\frac{1}{2};2;1)

Where ( a ) n = k 0 n 1 ( a + k ) (a)_n = \prod_{k≥0}^{n-1} (a+k)

Now 2 F 1 ( a , b ; c ; 1 ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) _2F_1 (a,b;c;1) = \frac{\Gamma{(c)}\Gamma{(c-a-b)}}{\Gamma{(c-a)}\Gamma{(c-b)}} In this case it is 2 F 1 ( 1 2 , 1 2 ; 2 ; 1 ) = 1 Γ 2 ( 3 2 ) = 4 π _2F_1 (\frac{1}{2},\frac{1}{2};2;1)= \frac{1}{\Gamma^2 {(\frac{3}{2})}}= \frac{4}{π} Answer is a 4 b = 0 \color{#20A900}{\boxed{a-4b=0}}

2 F 1 ( a , b ; c ; z ) = n 0 ( a ) n ( b ) n ( c ) n n ! z n _2F_1 (a ,b;c;z) = \sum_{n≥0}^∞ \frac{(a)_n (b)_n}{(c)_n n!}z^n Gaussian hypergeometric function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...