In the fifth day of Christmas, my true love sent to me 9 logarithms

Level pending

Let x x be 471 / 2 471/2 , y y be 43 / 2 43/2 , and z be 4331 / 2 4331/2 .

The expression log 3 ( x + y ) × log 5 ( y + z ) × log 7 ( z + x ) + log 3 ( z + x ) × log 5 ( x + y ) × log 7 ( y + z ) + log 3 ( y + z ) × log 5 ( z + x ) × log 7 ( x + y ) = log a b c \log_3(x + y) \times \log_5(y + z) \times \log_7(z + x) + \log_3(z + x) \times \log_5(x + y) \times \log_7(y + z) + \log_3(y + z) \times \log_5(z + x) \times \log_7(x + y) = \log_ab^c

where a , b , c R + a,b,c \in R^+

What is the value of a + b + c?


The answer is 346.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...