In the Middle of the Tower

Algebra Level 3

{ 2 x y 4 = 5 x y = 3 \large \begin{cases} 2^{x^{y^{4}}} = 5 \\ x^{y} = 3 \end{cases}

Given the above, find the real value of the product x y xy .


Try Part 2


The answer is 3.0397489662.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 20, 2020

2 x y 4 = 2 ( x y ) y 3 = 2 3 y 3 = 5 3 y 3 ln 2 = ln 5 3 y 3 = ln 5 ln 2 y 3 ln 3 = ln ( ln 5 ln 2 ) y 3 = ln ( ln 5 ln 2 ) ln 3 y = ln ( ln 5 ln 2 ) ln 3 3 0.915287667 \begin{aligned} 2^{x^{y^4}} & = 2^{(x^y)^{y^3}} = 2^{3^{y^3}} = 5 \\ 3^{y^3} \ln 2 & = \ln 5 \\ 3^{y^3} & = \frac {\ln 5}{\ln 2} \\ y^3 \ln 3 & = \ln \left(\frac {\ln 5}{\ln 2} \right) \\ y^3 & = \frac {\ln \left(\frac {\ln 5}{\ln 2} \right)}{\ln 3} \\ \implies y & = \sqrt[3]{\frac {\ln \left(\frac {\ln 5}{\ln 2} \right)}{\ln 3}} \approx 0.915287667 \end{aligned}

Since x y = 3 x^y = 3 ,

y ln x = ln 3 ln x = ln 3 y x = e ln 3 y x y = y e ln 3 3 0.915287667 e ln 3 0.915287667 3.04 \begin{aligned} \implies y \ln x & = \ln 3 \\ \ln x & = \frac {\ln 3}y \\ x = e^{\frac {\ln 3}y} \\ \implies xy & = ye^{\frac {\ln 3}3} \\ & \approx 0.915287667 e^{\frac {\ln 3}{0.915287667}} \\ & \approx \boxed{3.04} \end{aligned}

Kaizen Cyrus
Sep 19, 2020

Finding the value of y y .

x y = 3 y ln x = ln 3 ln x = ln 3 y \begin{array}{cc} \begin{aligned} x^{y} = \space & 3 \\ y \ln x = \space & \ln 3 \\ \implies \color{#3D99F6} \ln x \color{#333333} = \space & \color{#3D99F6} \dfrac{\ln 3}{y} \end{aligned} & \; \end{array}

2 x y 4 = 5 x y 4 ln 2 = ln 5 x y 4 = ln 5 ln 2 y 4 ln x = ln ( ln 5 ln 2 ) y 4 ln x = ln ( ln 5 ) ln ( ln 2 ) y 4 ln 3 y = ln ( ln 5 ) ln ( ln 2 ) y 3 ln 3 = ln ( ln 5 ) ln ( ln 2 ) y 3 = ln ( ln 5 ) ln ( ln 2 ) ln 3 y = ln ( ln 5 ) ln ( ln 2 ) ln 3 3 \begin{aligned} 2^{x^{y^{4}}} = \space & 5 \\ x^{y^{4}} \ln 2 = \space & \ln 5 \\ x^{y^{4}} = \space & \dfrac{\ln 5}{\ln 2} \\ y^{4} \ln x = \space & \ln \left( \dfrac{\ln 5}{\ln 2} \right) \\[0.75em] y^{4} \color{#3D99F6} \ln x \color{#333333} = \space & \ln ( \ln 5) - \ln ( \ln 2) \\ y^{4} \color{#3D99F6} \dfrac{\ln 3}{y} \color{#333333} = \space & \ln ( \ln 5) - \ln ( \ln 2) \\ y^{3} \ln 3 = \space & \ln ( \ln 5) - \ln ( \ln 2) \\[0.3em] y^{3} = \space & \dfrac{ \ln ( \ln 5) - \ln ( \ln 2)}{\ln 3} \\[0.6em] y = \space & \sqrt[3]{\dfrac{ \ln ( \ln 5) - \ln ( \ln 2)}{\ln 3}} \end{aligned}


Finding the value of x x .

ln x = ln 3 y x = e raised to ln 3 y x = e raised to ln 3 ln ( ln 5 ) ln ( ln 2 ) ln 3 3 \begin{aligned} \color{#3D99F6} \ln x \color{#333333} = \space & \color{#3D99F6} \dfrac{\ln 3}{y} \\ \implies x = \space & e \space \text{raised to} \space \dfrac{\ln 3}{y} \\ x = \space & e \space \text{raised to} \space \dfrac{ \ln 3}{ \sqrt[3]{\frac{ \ln ( \ln 5) - \ln ( \ln 2)}{\ln 3}}} \end{aligned}


{ x = 3.3210859... y = 0.9152876... x y = 3.039748... \begin{cases} x = 3.3210859... \\ y = 0.9152876... \\ xy = \boxed{3.039748...} \end{cases}

You can use exp ( x ) \exp(x) as a replacement of e x e^x .

Atomsky Jahid - 8 months, 3 weeks ago

Log in to reply

You can use exp ( x ) \exp(x) instead of e x p ( x ) exp(x) . Just put a '\' in front of the 'exp'.

Richard Desper - 8 months, 3 weeks ago

Log in to reply

Thanks. I forgot to put the backslash.

Atomsky Jahid - 8 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...