in the triangle ABC

Geometry Level pending

In A B C \triangle ABC find the minimum value of

1 sin A 2 + 1 sin B 2 + 1 sin C 2 \frac 1{\sin \frac A2 }+ \frac 1 {\sin \frac B2}+ \frac 1{\sin \frac C2}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2020

By Titu's lemma , we have:

1 sin A 2 + 1 sin B 2 + 1 sin C 2 ( 1 + 1 + 1 ) 2 sin A 2 + sin B 2 + sin C 2 Equality occurs when A = B = C = 6 0 = 9 3 2 = 6 \begin{aligned} \frac 1{\sin \frac A2} + \frac 1{\sin \frac B2} + \frac 1{\sin \frac C2} & \ge \frac {(1+1+1)^2}{\sin \frac A2 + \sin \frac B2 + \sin \frac C2} & \small \blue{\text{Equality occurs when }A=B=C=60^\circ} \\ & = \frac 9{\frac 32} = \boxed 6 \end{aligned}

how can sin (A/2)+sin(B/2)+sin(c/2)=3/2

Aly Ahmed - 1 year ago

Log in to reply

When A = B = C = 6 0 A=B=C=60^\circ , sin A 2 + sin B 2 + sin C 2 = 3 × sin 3 0 = 3 2 \sin \frac A2 + \sin \frac B2 + \sin \frac C2 = 3 \times \sin 30^\circ = \frac 32 .

Chew-Seong Cheong - 1 year ago

Let the lengths of the sides opposite to the angles A , B , C A, B, C of A B C \triangle {ABC} be a , b , c a, b, c respectively. Then the given expression equals

b c ( s b ) ( s c ) + c a ( s c ) ( s a ) + a b ( s a ) ( s b ) 3 a b c ( s a ) ( s b ) ( s c ) 3 \sqrt {\frac{bc}{(s-b) (s-c) }}+\sqrt {\frac{ca}{(s-c) (s-a) }}+\sqrt {\frac{ab}{(s-a) (s-b) }}\geq 3\sqrt[3] {\frac{abc}{(s-a) (s-b) (s-c) }} , where

s = a + b + c 2 s=\frac{a+b+c}{2} is the semi-perimeter of the triangle.

Equality holds when a = b = c a=b=c , so that the required minimum is 3 a 3 a 2 × a 2 × a 2 3 = 6 3\sqrt[3] {\frac{a^3}{\frac{a}{2}\times \frac{a}{2}\times \frac{a}{2}}}=\boxed 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...