IN THE WORLD OF THETA

Algebra Level 1

The Statement cos θ = 1 + t 2 1 t 2 \cos \theta = \frac{1+t^{2}}{1-t^{2}} is valid for t = ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sachin Sinha
Feb 27, 2014

max value of cos must be 1 and t^2 is always +ve . so if put any +ve fraction value less than 1 the result will be greater than 1 which is not possible.

Kenneth Choo
Feb 20, 2016

For cos θ = 1 + t 2 1 t 2 \cos { \theta } =\frac { 1+{ t }^{ 2 } }{ 1-{ t }^{ 2 } } to be valid,

1 1 + t 2 1 t 2 1 -1\le \frac { 1+{ t }^{ 2 } }{ 1-{ t }^{ 2 } } \le 1

Solving t t in inequalities,

1 + t 2 1 t 2 1 1 + t 2 1 + t 2 2 0 \frac { 1+{ t }^{ 2 } }{ 1-{ t }^{ 2 } } \ge -1\\ \Rightarrow 1+{ t }^{ 2 }\ge -1+{ t }^{ 2 }\\ \Rightarrow 2\ge 0

1 + t 2 1 t 2 1 1 + t 2 1 t 2 2 t 2 0 t = 0 \frac { 1+{ t }^{ 2 } }{ 1-{ t }^{ 2 } } \le 1\\ \Rightarrow 1+{ t }^{ 2 }\le 1-{ t }^{ 2 }\\ \Rightarrow 2{ t }^{ 2 }\le 0\\ \Rightarrow t=0

We've shown that for cos θ = 1 + t 2 1 t 2 \cos { \theta } =\frac { 1+{ t }^{ 2 } }{ 1-{ t }^{ 2 } } to be valid, t = 0 t=0 .

Hassam Rind
Apr 3, 2014

the value of t is zero

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...