Incircles on a regular tetrahedron

Geometry Level 4

A regular tetrahedron has an edge length of 100 100 . The incircles of two adjacent faces are drawn. Find the maximum distance between a point on the first incircle and a point on the second incircle. The maximum distance can be written as a b a \sqrt{b} , where a a and b b are positive integers, and b b is square-free. Find a + b a + b .


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 27, 2020

Suppose that we are looking at the tetrahedron from the side, and that we are considering the incircles of the triangles A C D ACD and B C D BCD . Suppose that the tetrahedron has side length 2 r 2r and that the angle between the faces A C D ACD and B C D BCD is 2 θ 2\theta . Then the altitude of each triangular face has length r 3 r\sqrt{3} , the radius of each incircle is r 3 \tfrac{r}{\sqrt{3}} and sin θ = 1 3 \sin\theta = \tfrac{1}{\sqrt{3}} . Points on the two incircles have position vectors x = r 3 [ ( 1 + cos ( s + t ) ) ( sin θ 0 cos θ ) + sin ( s + t ) ( 0 1 0 ) ] y = r 3 [ ( 1 + cos ( s t ) ) ( sin θ 0 cos θ ) + sin ( s t ) ( 0 1 0 ) ] \begin{aligned} \mathbf{x} & = \; \frac{r}{\sqrt{3}}\left[(1 + \cos(s+t))\left(\begin{array}{c} \sin\theta \\ 0 \\ \cos\theta \end{array}\right) + \sin(s+t)\left(\begin{array}{c}0 \\ 1 \\ 0 \end{array}\right) \right] \\[2ex] \mathbf{y} & = \; \frac{r}{\sqrt{3}}\left[(1 + \cos(s-t))\left(\begin{array}{c} -\sin\theta \\ 0 \\ \cos\theta \end{array}\right) + \sin(s-t)\left(\begin{array}{c}0 \\ 1 \\ 0 \end{array}\right) \right] \end{aligned}

and so x y = r 3 ( sin θ ( 2 + cos ( s + t ) + cos ( s t ) ) sin ( s + t ) sin ( s t ) cos θ ( cos ( s + t ) cos ( s t ) ) ) = 2 r 3 ( sin θ ( 1 + cos s cos t ) cos s sin t cos θ sin s sin t ) \mathbf{x}-\mathbf{y} \; = \; \frac{r}{\sqrt{3}}\left(\begin{array}{c} \sin\theta(2 + \cos(s+t)+\cos(s-t)) \\ \sin(s+t)-\sin(s-t) \\ \cos\theta(\cos(s+t)-\cos(s-t))\end{array}\right) \; = \; \frac{2r}{\sqrt{3}}\left(\begin{array}{c}\sin\theta(1 + \cos s \cos t) \\ \cos s \sin t \\ -\cos\theta \sin s \sin t \end{array}\right)

and hence x y 2 = 4 3 r 2 [ sin 2 θ ( 1 + cos s cos t ) 2 + cos 2 s sin 2 t + cos 2 θ sin 2 s sin 2 t ] = 4 3 r 3 [ sin 2 θ ( 1 + 2 cos s cos t + cos 2 s ) + cos 2 θ sin 2 t ] = 4 9 r 2 [ 1 + 2 cos s cos t + cos 2 s + 2 sin 2 t ] = 4 9 r 2 ( ( cos s + cos t ) 2 + 3 3 cos 2 t ) \begin{aligned} \Vert\mathbf{x}-\mathbf{y}\Vert^2 & = \; \tfrac43r^2\big[\sin^2\theta(1 + \cos s \cos t)^2 + \cos^2s \sin^2t + \cos^2\theta\sin^2s \sin^2t\big] \\ & = \; \tfrac43r^3\big[\sin^2\theta(1 + 2\cos s \cos t + \cos^2s) + \cos^2\theta\sin^2t\big] \; = \; \tfrac49r^2\big[1 + 2\cos s \cos t + \cos^2s + 2\sin^2t\big] \\ & = \; \tfrac49r^2\big((\cos s + \cos t)^2 + 3 - 3\cos^2t\big) \end{aligned} The maximum value of the function ( u + v ) 2 + 3 3 v 2 = 3 + 3 2 u 2 1 2 ( u 2 v ) 2 (u+v)^2 + 3 - 3v^2 = 3+\tfrac32u^2 - \tfrac12(u-2v)^2 over the range 1 u , v 1 -1 \le u,v \le 1 is 9 2 \tfrac92 , achieved when u = ± 1 u=\pm1 and v = 1 2 u v=\tfrac12u . Thus the maximum value of x y 2 \Vert\mathbf{x}-\mathbf{y}\Vert^2 is 2 r 2 2r^2 , making the maximum distance between two points on these incircles r 2 r\sqrt{2} . In this case r = 50 r=50 , so the distace is 50 2 50\sqrt{2} , making the answer 52 \boxed{52} . Note that this maximum distance is achieved when the two points on the incircles are at the midpoints of diametrically opposite edges of the tetrahedron.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...