Incredible Tangential Sum

Geometry Level 4

Amazingly, the value of tan ( n = 1 10 tan 1 ( n ) ) \tan\bigg(\displaystyle\sum_{n=1}^{10} \tan^{-1}(n)\bigg) can be written in the form a b \frac{a}{b} where a a and b b are coprime integers. What is a + b a+b ?

Inspired by this .


The answer is 6898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Garrett Clarke
Jun 28, 2015

Here is the general formula for this type of sum:

tan ( n = 1 x tan 1 n ) = I m [ n = 1 x ( 1 + n i ) ] R e [ n = 1 x ( 1 + n i ) ] \tan \Bigg(\displaystyle\sum_{n=1}^x \tan^{-1} n\Bigg) = \frac{\large Im\Bigg[\displaystyle\prod_{n=1}^x (1+ni)\Bigg]}{\large Re \Bigg[\displaystyle\prod_{n=1}^x (1+ni)\Bigg]}

Basically what this formula is saying that you have to find the product ( 1 + i ) × ( 1 + 2 i ) × × ( 1 + x i ) (1+i)\times(1+2i)\times \dots \times (1+xi) , and your answer is the imaginary part of this number divided by the real part.

For this specific question, our product terminates to 5864300 + 3103100 i 5864300+3103100 i . Taking the imaginary part and dividing by the real part simplifies to 2387 4511 \frac{2387}{4511} , therefore our answer is 2387 + 4511 = 6898 2387+4511=\boxed{6898} .

For a proof of this formula, please refer to this note .

Mas Mus
Jun 28, 2015

First, we will prof that tan 1 A + tan 1 B = tan 1 ( A + B 1 A B ) \tan^{-1} A+\tan^{-1} B=\tan^{-1}\left(\frac{A+B}{1-AB}\right)

Using the identity tan ( X + Y ) = tan X + tan Y 1 tan X tan Y X + Y = tan 1 ( tan X + tan Y 1 tan X tan Y ) \tan(X+Y)=\frac{\tan X+\tan Y}{1-\tan X\tan Y}\implies X+Y=\tan^{-1}\left(\frac{\tan X+\tan Y}{1-\tan X\tan Y}\right) Let X = tan 1 A X=\tan^{-1} A and Y = tan 1 B Y=\tan^{-1} B and substitute to the last equation and the evidence has been obtained.

Now, we will use the formula to evaluate each of the two arc-tangent addition.

(1) tan 1 ( 1 ) + tan 1 ( 2 ) = tan 1 ( 3 ) ~~\tan^{-1}(1)+\tan^{-1}(2)=\tan^{-1}(-3)

(2) tan 1 ( 3 ) + tan 1 ( 4 ) = tan 1 ( 7 11 ) ~~\tan^{-1}(3)+\tan^{-1}(4)=\tan^{-1}(-\frac{7}{11})

(3) tan 1 ( 5 ) + tan 1 ( 6 ) = tan 1 ( 11 29 ) ~~\tan^{-1}(5)+\tan^{-1}(6)=\tan^{-1}(-\frac{11}{29})

(4) tan 1 ( 7 ) + tan 1 ( 8 ) = tan 1 ( 3 11 ) ~~\tan^{-1}(7)+\tan^{-1}(8)=\tan^{-1}(-\frac{3}{11})

(5) tan 1 ( 9 ) + tan 1 ( 10 ) = tan 1 ( 19 89 ) ~~\tan^{-1}(9)+\tan^{-1}(10)=\tan^{-1}(-\frac{19}{89})

furthermore, add (1) and (2), (3) and (4)

(6) tan 1 ( 3 ) + tan 1 ( 7 11 ) = tan 1 ( 3 7 11 1 21 11 ) = tan 1 ( 4 ) ~~\tan^{-1}(-3)+\tan^{-1}(-\frac{7}{11})=\tan^{-1}\left(\frac{-3-\frac{7}{11}}{1-\frac{21}{11}}\right)=\tan^{-1}(4)

(7) tan 1 ( 11 29 ) + tan 1 ( 3 11 ) = tan 1 ( 8 11 ) ~~\tan^{-1}(-\frac{11}{29})+\tan^{-1}(-\frac{3}{11})=\tan^{-1}(-\frac{8}{11})

Now, add (6) and (7)

(8) tan 1 ( 4 ) + tan 1 ( 8 11 ) = tan 1 ( 36 43 ) ~~\tan^{-1}(4)+\tan^{-1}(-\frac{8}{11})=\tan^{-1}(\frac{36}{43})

The last, add (5) and (8)

(9) tan 1 ( 19 89 ) + tan 1 ( 36 43 ) = tan 1 ( 2387 4511 ) ~~\tan^{-1}(-\frac{19}{89})+\tan^{-1}(\frac{36}{43})=\tan^{-1}(\frac{2387}{4511})

Finally, the answer of our problem is

tan [ tan 1 ( 2387 4511 ) ] = 2387 4511 = a b \tan \left[\tan^{-1}\left(\frac{2387}{4511}\right)\right]=\frac{2387}{4511}=\frac{a}{b}

Thus, a + b = 6898 a+b=\boxed{\boxed{\boxed{\LARGE{6898}}}}

Note: this is not a practical solution. I'll wait for another more practical solution

Let me tell you that it was a LOT shorter and easier to understand than mine, so you're good for now!

Garrett Clarke - 5 years, 11 months ago

Log in to reply

Oh, really? Thank you

Mas Mus - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...