A Disguise of Something Else

Algebra Level 3

i z 2 = 1 + 2 z + 3 z 2 + 4 z 3 + 5 z 4 + iz^2=1+\dfrac 2z + \dfrac{3}{z^2}+\dfrac{4}{z ^3}+\dfrac{5}{z^4}+\cdots

For i = 1 i = \sqrt{-1} , a complex number, z = n ± i z=n\pm \sqrt{-i} satisfy the equation above. What is the value of 100 n \lfloor 100n \rfloor ?


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Parth Lohomi
Feb 4, 2015

Multiplying both sides of the equation by z, we get

i z 3 = z + 2 + 3 z + 4 z 2 + iz^3 = z + 2 + \dfrac{3}{z} + \dfrac{4}{z^2} + \cdots ,

and subtracting the original equation from this one we get

i z 2 ( z 1 ) = z + 1 + 1 z + 1 z 2 + 1 z 3 + . iz^2(z-1)=z+1+\dfrac{1}{z}+\dfrac{1}{z^2}+\dfrac{1}{z^3}+\cdots.

Using the formula for an infinite geometric series, we find

i z 2 ( z 1 ) = z 1 1 z = z 2 z 1 . iz^2(z-1)=\dfrac{z}{1-\dfrac{1}{z}}=\dfrac{z^2}{z-1}.

Rearranging, we get

i z 2 ( z 1 ) 2 = z 2 ( z 1 ) 2 = 1 i = i z = 1 ± i . iz^2(z-1)^2=z^2\iff (z-1)^2=\frac{1}{i}=-i\Rightarrow z=1\pm\sqrt{-i}. Thus n = 1 n=1 , and the answer is 100 n = 100 . \lfloor 100n \rfloor = \boxed{100}.

Why kept level 5?

U Z - 6 years, 4 months ago

Log in to reply

God knows !

Keshav Tiwari - 6 years, 4 months ago

You need to show that 1 / z < 1 |1/z| < 1 else the series diverge.

Pi Han Goh - 5 years, 6 months ago

I solved it using Maclaurin series.

1 1 x = 1 + x + x 2 + x 3 + x 4 + x 5 + . . . \dfrac {1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5+ ...

d d x ( 1 1 x ) = 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + . . . \Rightarrow \dfrac {d}{dx} \left( \dfrac {1}{1-x} \right) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...

1 ( 1 x ) 2 = 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + . . . \Rightarrow \dfrac {1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...

Let x = 1 z x = \dfrac {1}{z} , then we have:

1 ( 1 1 z ) 2 = 1 + 2 z + 3 z 2 + 4 z 3 + 5 z 4 + . . . \Rightarrow \dfrac {1}{(1-\frac{1}{z})^2} = 1 + \dfrac {2}{z} + \dfrac {3}{z^2} + \dfrac {4}{z^3} + \dfrac {5}{z^4} + ...

1 ( 1 1 z ) 2 = i z 2 z 2 ( z 1 ) 2 = i z 2 1 ( z 1 ) 2 = i \Rightarrow \dfrac {1}{(1-\frac{1}{z})^2} = iz^2 \quad \Rightarrow \dfrac {z^2}{(z-1)^2} = iz^2 \quad \Rightarrow \dfrac {1}{(z-1)^2} = i

( z 1 ) 2 = 1 i = i z 1 = ± i z = 1 ± i \Rightarrow (z-1)^2 = \dfrac {1}{i} = -i \quad \Rightarrow z - 1 = \pm \sqrt{-i}\quad \Rightarrow z = 1 \pm \sqrt{-i}

n = 1 100 n = 100 \Rightarrow n = 1\quad \Rightarrow \lfloor 100n \rfloor = \boxed{100}

Well, it should be specified that i i is the imaginary root, just in case or rather one should use ι \iota

Kartik Sharma - 6 years, 3 months ago

You need to mention that x < 1 |x| < 1 and you need to show that 1 / z | 1/z | is indeed less than 1, else your series does not converge.

Pi Han Goh - 5 years, 6 months ago
Andrea Palma
Mar 21, 2015

Divide by z z and obtain

i z = 1 z + 2 z 2 + 3 z 3 + 4 z 4 + 5 z 5 + iz = \dfrac 1z +\dfrac {2}{z^2} + \dfrac{3}{z^3}+\dfrac{4}{z ^4}+\dfrac{5}{z^5}+\cdots

Since

z z 1 = k = 0 1 z k = 1 + 1 z + 1 z 2 + 1 z 3 + 1 z 4 + 1 z 5 + \dfrac{z}{z-1} = \sum_{k=0}^{\infty} \dfrac{1}{z^k} = 1 + \dfrac 1z +\dfrac {1}{z^2} + \dfrac{1}{z^3}+\dfrac{1}{z ^4}+\dfrac{1}{z^5}+\cdots

we have

i z + z z 1 = iz + \dfrac{z}{z-1} =

= 1 z + 2 z 2 + 3 z 3 + 4 z 4 + + 1 + 1 z + 1 z 2 + 1 z 3 + 1 z 4 + = = \dfrac 1z +\dfrac {2}{z^2} + \dfrac{3}{z^3}+\dfrac{4}{z ^4}+\cdots + 1 + \dfrac 1z +\dfrac {1}{z^2} + \dfrac{1}{z^3}+\dfrac{1}{z ^4}+\cdots =

= 1 + 2 z + 3 z 2 + 4 z 3 + 5 z 4 + = i z 2 = 1+\dfrac 2z + \dfrac{3}{z^2}+\dfrac{4}{z ^3}+\dfrac{5}{z^4}+\cdots = iz^2

We have the nice equation

i z + z z 1 = i z 2 iz + \dfrac{z}{z-1} = iz^2

that becames

z 2 2 z + ( 1 i ) = 0 z^2 - 2z +(1-i) = 0

solving it with the second degree polynomial formula we get

z = 1 ± i z = 1 \pm \sqrt{-i}

so that n = 1 n = 1 and the answer is 100 100 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...