Indefinite integral

Calculus Level 2

If A A is a constant, what is cos 2 x cos 2 A cos x cos A d x ? \int{\frac{\cos{2x} - \cos{2A}}{\cos{x}-\cos{A}} dx}?

Details and assumptions

Use C C as the constant of integration.

( sin x + x cos A ) + C (\sin{x} + x \cos{A}) + C 2 ( sin x + x cos A ) + C 2(\sin{x} + x \cos{A}) + C 2 ( sin A + x cos x ) + C 2(\sin{A} + x \cos{x}) + C ( sin A + x cos x ) + C (\sin{A} + x \cos{x}) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Feb 10, 2015

cos 2 x cos 2 A cos x cos A d x \displaystyle \int \dfrac{\cos{2x} - \cos{2A}}{\cos{x}-\cos{A}} dx

1 + cos 2 x ( 1 + cos 2 A ) cos x cos A d x \displaystyle \int \dfrac{ 1 + \cos{2x} - ( 1 + \cos{2A})}{\cos{x}-\cos{A}} dx

2 cos 2 x 2 cos 2 A ) cos x cos A d x \displaystyle \int \dfrac{ 2\cos^2{x} - 2\cos^2{A})}{\cos{x}-\cos{A}} dx

2 ( cos x + cos A ) ( cos x cos A ) cos x cos A d x \displaystyle \int \dfrac{2 ( \cos{x} + \cos{A})( \cos{x} - \cos{A})}{\cos{x}-\cos{A}} dx

2 ( cos x + cos A ) d x \displaystyle \int 2 (\cos{x} + \cos{A}) dx

= 2 ( sin x + x cos A ) + C = 2(\sin{x} + x \cos{A}) + C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...