Indefinite poly

Calculus Level 3

Let P ( x ) P(x) be a monic polynomial of degree n n and g 0 : R R g_0: \mathbb{R} \to \mathbb{R} be any integrable function such that

g 1 ( x ) = g 0 ( x ) d x g 2 ( x ) = g 1 ( x ) d x g 3 ( x ) = g 2 ( x ) d x g n + 1 ( x ) = g n ( x ) d x \begin{aligned} g_{1}(x) & = \int g_0(x) \ dx \\ g_{2}(x) & = \int g_1(x) \ dx \\ g_{3}(x) & = \int g_2(x) \ dx \\ & \quad \vdots \\ g_{n+1}(x) & = \int g_n(x) \ dx \end{aligned}

Then P ( x ) g 0 ( x ) d x \displaystyle \int P(x) g_0(x) \ dx is equal to:

A: n ! + P ( x ) + g 0 ( x ) d x \quad n! + P'(x) + \displaystyle \int g_0(x) \ dx

B: P ( x ) g 1 ( x ) P ( x ) g 2 ( x ) + + ( 1 ) n n ! g n + 1 ( x ) \quad P(x) g_1(x) - P'(x) g_2(x) + \cdots + (-1)^nn!g_{n+1} (x)

C: P ( x ) g 1 ( x ) + P ( x ) g 2 ( x ) + P ( x ) g 3 ( x ) + + n g n + 1 ( x ) \quad P(x) g_{1}(x) + P' (x) g_{2} (x) + P'' (x) g_{3}(x) + \cdots + n g_{n+1} (x)

B C A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 16, 2017

I = P ( x ) g 0 ( x ) d x By integration by parts = P ( x ) g 1 ( x ) P ( x ) g 1 ( x ) d x Note that g 0 ( x ) d x = g 1 ( x ) = P ( x ) g 1 ( x ) P ( x ) g 2 ( x ) + P ( x ) g 2 ( x ) d x = P ( x ) g 1 ( x ) P ( x ) g 2 ( x ) + P ( x ) g 3 ( x ) + ( 1 ) n n ! g n + 1 ( x ) Note that P ( n ) ( x ) = n ! \begin{aligned} I & = \int P(x) g_0(x) \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = P(x){\color{#3D99F6}g_1(x)} - \int P'(x) g_1(x) \ dx & \small \color{#3D99F6} \text{Note that }\int g_0(x) \ dx = g_1(x) \\ & = P(x)g_1(x) - P'(x) g_2(x) + \int P''(x) g_2(x) \ dx \\ & = P(x)g_1(x) - P'(x) g_2(x) + P''(x) g_3(x) - \cdots + (-1)^n {\color{#3D99F6}n!} g_{n+1}(x) & \small \color{#3D99F6} \text{Note that }P^{(n)}(x) = n! \end{aligned}

Therefore, the answer is B .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...