k = 1 ∑ 1 3 sin ( 4 π + 6 ( k − 1 ) π ) sin ( 4 π + 6 k π ) 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
M u l t i p l y a n d d i v i d e b y sin 6 π = ∑ k = 1 1 3 sin ( 4 π + 6 k π ) sin ( 4 π + 6 ( k − 1 ) π ) sin 6 π sin ( 4 π + 6 k π − [ 4 π + 6 ( k − 1 ) π ] ) L e t A = 4 π + 6 k π ; B = 4 π + 6 ( k − 1 ) π = 2 ∑ k = 1 1 3 sin A sin B sin A cos B − cos A sin B = 2 ∑ k = 1 1 3 cot B − cot A = 2 ( cot 4 π − cot 1 2 5 π ) = 2 ( 1 − ( 2 − 3 ) ) = 2 ( 3 − 1 )
Problem Loading...
Note Loading...
Set Loading...
S = k = 1 ∑ 1 3 sin ( 4 π + 6 ( k − 1 ) π ) sin ( 4 π + 6 k π ) 1 = k = 1 ∑ 1 3 sin 1 2 ( 2 k + 1 ) π sin 1 2 ( 2 k + 3 ) π 1 = k = 2 ∑ 1 4 sin 1 2 ( 2 k − 1 ) π sin 1 2 ( 2 k + 1 ) π 1 = k = 2 ∑ 1 4 cos 6 π − cos 3 k π 2
Let us now consider the sum of six consecutive terms or k = 2 to k = 7 . Since cos 3 7 π = cos 3 π , it is similar to considering k = 1 to k = 6 .
S 6 = k = 1 ∑ 6 cos 6 π − cos 3 k π 2 = 2 3 − 2 1 2 + 2 3 + 2 1 2 + 2 3 + 1 2 + 2 3 + 2 1 2 + 2 3 − 2 1 2 + 2 3 − 1 2 = 2 3 − 2 1 4 + 2 3 + 2 1 4 + 2 3 + 1 2 + 2 3 − 1 2 = ( 2 3 − 2 1 ) ( 2 3 + 2 1 ) 4 ( 2 3 + 2 1 + 2 3 − 2 1 ) + ( 2 3 + 1 ) ( 2 3 − 1 ) 2 ( 2 3 − 1 + 2 3 + 1 ) = 2 1 4 3 − 4 1 2 3 = 8 3 − 8 3 = 0
Since the summand is periodical, the sum of every six consecutive terms is equal to 0. As we need to sum 13 terms the sum of the first 12 terms is 0, therefore the sum S is equal to the last term:
S = cos 6 π − cos 3 1 4 π 2 = cos 6 π − cos 3 2 π 2 = 2 3 + 2 1 2 = 2 ( 3 − 1 )