Independent of k k

Geometry Level 4

k = 1 13 1 sin ( π 4 + ( k 1 ) π 6 ) sin ( π 4 + k π 6 ) = ? \large \sum_{k=1}^{13}\dfrac{ 1}{\sin \left(\frac{\pi}{4}+\frac{(k-1)\pi}{6}\right)\sin \left(\frac{\pi}{4}+\frac{k\pi}{6}\right)} =\, ?

2 ( 2 + 3 ) 2(2 + \sqrt3) 2 ( 3 1 ) 2(\sqrt3-1) 3 3 3 -\sqrt3 2 ( 3 3 ) 2(3 - \sqrt3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = k = 1 13 1 sin ( π 4 + ( k 1 ) π 6 ) sin ( π 4 + k π 6 ) = k = 1 13 1 sin ( 2 k + 1 ) π 12 sin ( 2 k + 3 ) π 12 = k = 2 14 1 sin ( 2 k 1 ) π 12 sin ( 2 k + 1 ) π 12 = k = 2 14 2 cos π 6 cos k π 3 \begin{aligned} S & = \sum_{k=1}^{13} \frac 1{\sin\left(\frac \pi 4 + \frac {(k-1)\pi}6 \right)\sin\left(\frac \pi 4 + \frac {k\pi}6 \right)} \\ & = \sum_{k=1}^{13} \frac 1{\sin \frac {(2k+1)\pi}{12} \sin \frac {(2k+3)\pi}{12}} \\ & = \sum_{\color{#D61F06}k=2}^{\color{#D61F06}14} \frac 1{\sin \frac {({\color{#D61F06}2k-1})\pi}{12} \sin \frac {({\color{#D61F06}2k+1})\pi}{12}} \\ & = \sum_{k=2}^{14} \frac 2{\cos \frac \pi 6 - \cos \frac {k\pi}3} \end{aligned}

Let us now consider the sum of six consecutive terms or k = 2 k = 2 to k = 7 k =7 . Since cos 7 π 3 = cos π 3 \cos \frac {7\pi}3 = \cos \frac \pi 3 , it is similar to considering k = 1 k = 1 to k = 6 k =6 .

S 6 = k = 1 6 2 cos π 6 cos k π 3 = 2 3 2 1 2 + 2 3 2 + 1 2 + 2 3 2 + 1 + 2 3 2 + 1 2 + 2 3 2 1 2 + 2 3 2 1 = 4 3 2 1 2 + 4 3 2 + 1 2 + 2 3 2 + 1 + 2 3 2 1 = 4 ( 3 2 + 1 2 + 3 2 1 2 ) ( 3 2 1 2 ) ( 3 2 + 1 2 ) + 2 ( 3 2 1 + 3 2 + 1 ) ( 3 2 + 1 ) ( 3 2 1 ) = 4 3 1 2 2 3 1 4 = 8 3 8 3 = 0 \begin{aligned} S_6 & = \sum_{k=1}^6 \frac 2{\cos \frac \pi 6 - \cos \frac {k\pi}3} \\ & = \frac 2{\frac {\sqrt 3}2 - \frac 12} + \frac 2{\frac {\sqrt 3}2 + \frac 12} + \frac 2{\frac {\sqrt 3}2 +1} + \frac 2{\frac {\sqrt 3}2 + \frac 12} + \frac 2{\frac {\sqrt 3}2 - \frac 12} + \frac 2{\frac {\sqrt 3}2 -1} \\ & = \frac 4{\frac {\sqrt 3}2 - \frac 12} + \frac 4{\frac {\sqrt 3}2 + \frac 12} + \frac 2{\frac {\sqrt 3}2 +1} + \frac 2{\frac {\sqrt 3}2 -1} \\ & = \frac {4 \left( \frac {\sqrt 3}2 + \frac 12 + \frac {\sqrt 3}2 - \frac 12\right)}{\left(\frac {\sqrt 3}2 - \frac 12\right)\left(\frac {\sqrt 3}2 + \frac 12\right)} + \frac {2 \left( \frac {\sqrt 3}2 - 1 + \frac {\sqrt 3}2 + 1 \right)}{\left(\frac {\sqrt 3}2 + 1 \right)\left(\frac {\sqrt 3}2 - 1 \right)} \\ & = \frac {4\sqrt 3}{\frac 12} - \frac {2\sqrt 3}{\frac 14} = 8 \sqrt 3 - 8 \sqrt 3 = 0 \end{aligned}

Since the summand is periodical, the sum of every six consecutive terms is equal to 0. As we need to sum 13 terms the sum of the first 12 terms is 0, therefore the sum S S is equal to the last term:

S = 2 cos π 6 cos 14 π 3 = 2 cos π 6 cos 2 π 3 = 2 3 2 + 1 2 = 2 ( 3 1 ) \begin{aligned} S & = \frac 2{\cos \frac \pi 6 - \cos \frac {14\pi}3} = \frac 2{\cos \frac \pi 6 - \cos \frac {2\pi}3} = \frac 2{\frac {\sqrt 3}2 + \frac 12} = \boxed{2(\sqrt 3-1)} \end{aligned}

Benny Joseph
Nov 6, 2016

M u l t i p l y a n d d i v i d e b y sin π 6 = k = 1 13 sin ( π 4 + k π 6 [ π 4 + ( k 1 ) π 6 ] ) sin ( π 4 + k π 6 ) sin ( π 4 + ( k 1 ) π 6 ) sin π 6 L e t A = π 4 + k π 6 ; B = π 4 + ( k 1 ) π 6 = 2 k = 1 13 sin A cos B cos A sin B sin A sin B = 2 k = 1 13 cot B cot A = 2 ( cot π 4 cot 5 π 12 ) = 2 ( 1 ( 2 3 ) ) = 2 ( 3 1 ) \large Multiply\quad and\quad divide\quad by\quad \large{ \sin { \frac { \pi }{ 6 } } \\ =\quad \sum _{ k=1 }^{ 13 }{ \frac { \sin { (\frac { \pi }{ 4 } +\frac { k\pi }{ 6 } -[\frac { \pi }{ 4 } +\frac { (k-1)\pi }{ 6 } ]) } }{ \sin { (\frac { \pi }{ 4 } +\frac { k\pi }{ 6 } )\sin { (\frac { \pi }{ 4 } +\frac { (k-1)\pi }{ 6 } ) } } \sin { \frac { \pi }{ 6 } } } } \\ Let\quad A\quad =\quad \frac { \pi }{ 4 } +\frac { k\pi }{ 6 } \quad ;\quad B\quad =\quad \frac { \pi }{ 4 } +\frac { (k-1)\pi }{ 6 } \\ =\quad 2\sum _{ k=1 }^{ 13 }{ \frac { \sin { A\cos { B-\cos { A\sin { B } } } } }{ \sin { A\sin { B } } } } \\ =\quad 2\sum _{ k=1 }^{ 13 }{ \cot { B } } -\cot { A } \\ =\quad 2\quad (\cot { \frac { \pi }{ 4 } } -\cot { \frac { 5\pi }{ 12 } } )\\ =\quad 2(1-(2-\sqrt { 3 } ))\\ =\quad 2(\sqrt { 3 } -1)}\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...