Indeterminate Form!!

Calculus Level 3

lim x 0 ( tan ( x ) x ) 1 x 2 = ? \lim_{x \to 0} \left(\frac {\tan (x)}x \right)^{\frac 1{x^2}} = \ ?

e 1 3 e^\frac 13 e 1 2 e^\frac 12 e e e 1 6 e^\frac 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 28, 2017

L = lim x 0 ( tan x x ) 1 x 2 Since lim x 0 tan x x , this is a 1 case. = exp ( lim x 0 1 x 2 ( tan x x 1 ) ) See note. = exp ( lim x 0 tan x x x 3 ) By Maclaurin series = exp ( lim x 0 x + x 3 3 + 2 x 5 15 + 17 x 7 315 + x x 3 ) = exp ( lim x 0 ( 1 3 + 2 x 2 15 + 17 x 4 315 + ) ) = e 1 3 = e 3 \begin{aligned} L & = \lim_{x \to 0} \left(\frac {\tan x}x\right)^{\frac 1{x^2}} & \small \color{#3D99F6} \text{Since }\lim_{x \to 0} \frac {\tan x}x \text{, this is a }1^\infty \text{ case.} \\ & = \exp \left(\lim_{x \to 0} \frac 1{x^2} \left(\frac {\tan x}x - 1\right) \right) & \small \color{#3D99F6} \text{See note.} \\ & = \exp \left(\lim_{x \to 0} \frac {{\color{#3D99F6}\tan x}-x}{x^3} \right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \exp \left(\lim_{x \to 0} \frac {{\color{#3D99F6}x + \frac {x^3}3+\frac {2x^5}{15}+\frac {17x^7}{315}+\cdots}-x}{x^3} \right) \\ & = \exp \left(\lim_{x \to 0} \left(\frac 13+\frac {2x^2}{15}+\frac {17x^4}{315}+\cdots \right) \right) \\ & = e^\frac 13 = \boxed{\sqrt[3]e} \end{aligned}


Note: If lim x a ( f ( x ) g ( x ) ) h ( x ) = 1 lim x a ( f ( x ) g ( x ) ) h ( x ) = e lim x a 1 h ( x ) ( f ( x ) g ( x ) 1 ) \displaystyle \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = 1^\infty \implies \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = e^{\lim_{x \to a} \frac 1{h(x)}\left(\frac {f(x)}{g(x)} - 1\right)} ( See 2nd Method ).

Joseph Newton
Dec 27, 2017

lim x 0 tan x x = 1 lim x 0 1 x 2 = lim x 0 ( tan x x ) 1 x 2 = 1 \lim_{x\to0}\frac{\tan x}{x}=1\qquad\qquad\lim_{x\to0}\frac{1}{x^2}=\infty\\ \lim_{x\to0}\left(\frac{\tan x}{x}\right)^\frac{1}{x^2}=1^\infty This is a good example of a case where the indeterminate form 1 1^\infty does not equal 1 1 .

First we will take the natural logarithm of the limit to get rid of the power: ln [ lim x 0 ( tan x x ) 1 x 2 ] = lim x 0 [ ln ( tan x x ) 1 x 2 ] = lim x 0 [ 1 x 2 ln ( tan x x ) ] = lim x 0 ln ( tan x x ) x 2 \begin{aligned}\ln\left[\lim_{x\to0}\left(\frac{\tan x}{x}\right)^\frac{1}{x^2}\right]&=\lim_{x\to0}\left[\ln\left(\frac{\tan x}{x}\right)^\frac{1}{x^2}\right]\\ &=\lim_{x\to0}\left[\frac{1}{x^2}\ln\left(\frac{\tan x}{x}\right)\right]\\ &=\lim_{x\to0}\frac{\ln\left(\frac{\tan x}{x}\right)}{x^2}\end{aligned} Since ln ( 1 ) = 0 \ln(1)=0 we now have a 0 0 \frac{0}{0} situation, so we can use L'Hospital's Rule and derive the top and bottom of the fraction to remove the logarithm: = lim x 0 d d x ln ( tan x x ) d d x x 2 = lim x 0 ( ( x sec 2 x tan x x 2 ) ( tan x x ) ) 2 x = lim x 0 x sec 2 x tan x 2 x 2 tan x \begin{aligned}&=\lim_{x\to0}\frac{\frac{d}{dx}\ln\left(\frac{\tan x}{x}\right)}{\frac{d}{dx}x^2}\\ &=\lim_{x\to0}\frac{\left(\frac{\left(\frac{x\sec^2x-\tan x}{x^2}\right)}{\left(\frac{\tan x}{x}\right)}\right)}{2x}\\ &=\lim_{x\to0}\frac{x\sec^2x-\tan x}{2x^2\tan x}\end{aligned} The top and bottom still equal zero, so we just have to use L'Hospital's Rule again. Remember that d d x tan x = sec 2 x \frac{d}{dx}\tan x=\sec^2x and d d x sec 2 x = 2 sec 2 x tan x \frac{d}{dx}\sec^2 x=2\sec^2x\tan x . = lim x 0 d d x ( x sec 2 x tan x ) d d x ( 2 x 2 tan x ) = lim x 0 2 x sec 2 x tan x + sec 2 x sec 2 x 2 x 2 sec 2 x + 4 x tan x = lim x 0 2 x sec 2 x tan x 2 x 2 sec 2 x + 4 x tan x = lim x 0 sec 2 x tan x x sec 2 x + 2 tan x \begin{aligned}&=\lim_{x\to0}\frac{\frac{d}{dx}\left(x\sec^2x-\tan x\right)}{\frac{d}{dx}\left(2x^2\tan x\right)}\\ &=\lim_{x\to0}\frac{2x\sec^2x\tan x+\sec^2x-\sec^2 x}{2x^2\sec^2x+4x\tan x}\\ &=\lim_{x\to0}\frac{2x\sec^2x\tan x}{2x^2\sec^2x+4x\tan x}\\ &=\lim_{x\to0}\frac{\sec^2x\tan x}{x\sec^2x+2\tan x}\end{aligned} And then we use L'Hospital's Rule again... What are you looking at? I know what I'm doing. Just bare with me. = lim x 0 d d x ( sec 2 x tan x ) d d x ( x sec 2 x + 2 tan x ) = lim x 0 2 sec 2 x tan 2 x + sec 4 x 2 x sec 2 x tan x + sec 2 x + 2 sec 2 x = lim x 0 2 sec 2 x tan 2 x + sec 4 x 2 x sec 2 x tan x + 3 sec 2 x = lim x 0 2 tan 2 x + sec 2 x 2 x tan x + 3 \begin{aligned}&=\lim_{x\to0}\frac{\frac{d}{dx}\left(\sec^2x\tan x\right)}{\frac{d}{dx}\left(x\sec^2x+2\tan x\right)}\\ &=\lim_{x\to0}\frac{2\sec^2x\tan^2x+\sec^4x}{2x\sec^2x\tan x+\sec^2x+2\sec^2 x}\\ &=\lim_{x\to0}\frac{2\sec^2x\tan^2x+\sec^4x}{2x\sec^2x\tan x+3\sec^2x}\\ &=\lim_{x\to0}\frac{2\tan^2x+\sec^2x}{2x\tan x+3}\end{aligned} Now we can finally substitute in x = 0 x=0 , knowing that tan 0 = 0 \tan 0=0 and sec 0 = 1 \sec 0=1 : = 2 ( 0 ) + ( 1 ) 2 3 + 2 ( 0 ) ( 0 ) = 1 3 \begin{aligned}&=\frac{2(0)+(1)^2}{3+2(0)(0)}\\ &=\frac{1}{3}\end{aligned} This is not the answer yet, because remember we took the natural log of the question right at the start. So the final step is to reverse that: ln [ lim x 0 ( tan x x ) 1 x 2 ] = 1 3 lim x 0 ( tan x x ) 1 x 2 = e 1 3 \begin{aligned}\ln\left[\lim_{x\to0}\left(\frac{\tan x}{x}\right)^\frac{1}{x^2}\right]&=\frac{1}{3}\\ \implies\lim_{x\to0}\left(\frac{\tan x}{x}\right)^\frac{1}{x^2}&=\boxed{e^\frac{1}{3}}\end{aligned}

@Joseph Newton you can solve it by using the expansions of sin(x) and cos(x) after writing tan(x) in form of sin(x)/cos(x). It will be easier!!

Moulik Bhattacharya - 3 years, 5 months ago

Oh wow, this is very detailed and well constructed. Thanks for sharing! +1

Pi Han Goh - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...