Index game

Without using calculator , determine whether is 201 6 27 + 201 7 27 + 201 8 27 + 201 9 27 2016^{27}+2017^{27}+2018^{27}+2019^{27} divisible by 4035 4035 ?

No Insufficient information Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Oct 20, 2017

Solution 1 :

201 6 27 + 201 7 27 + 201 8 27 + 201 9 27 ( mod 4035 ) ( 2019 ) 27 + ( 2018 ) 27 + 201 8 27 + 201 9 27 ( mod 4035 ) 0 ( mod 4035 ) 2016^{27}+2017^{27}+2018^{27}+2019^{27} \ (\text{mod} 4035) \\ \equiv (-2019)^{27}+(-2018)^{27}+2018^{27}+2019^{27} \ (\text{mod} 4035) \\ \equiv 0 \ (\text{mod} 4035)

\therefore Yes


Solution 2 :

Note that a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3 = (a+b)(a^2-ab+b^2)

201 6 27 + 201 7 27 + 201 8 27 + 201 9 27 = ( 201 6 27 + 201 9 27 ) + ( 201 7 27 + 201 8 27 ) = ( 201 6 9 + 201 9 9 ) ( ) + ( 201 7 9 + 201 8 9 ) ( ) = ( 201 6 3 + 201 9 3 ) ( ) + ( 201 7 3 + 201 8 3 ) ( ) = ( 2016 + 2019 ) ( ) + ( 2017 + 2018 ) ( ) = 4035 ( ) + 4035 ( ) = 4035 ( ) 2016^{27}+2017^{27}+2018^{27}+2019^{27} \\ = (2016^{27}+2019^{27})+(2017^{27}+2018^{27}) \\ = (2016^9+2019^9)(\cdots) + (2017^9+2018^9)(\cdots) \\ = (2016^3+2019^3)(\cdots) + (2017^3+2018^3)(\cdots) \\ = (2016+2019)(\cdots) + (2017+2018)(\cdots) \\ = 4035(\cdots) +4035(\cdots) \\ = 4035(\cdots)

\therefore Yes

how is 2016^27+2017^27+2018^27+2019^27[mod4035]=(-2019)^27+(-2018)^27+2019^27+2018^27(mod4035)

Sumukh Bansal - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...