Indices and Log

Algebra Level 2

3 2 x = 1 5 x + 1 \large 3^{2x} = 15^{x+1}

Solve for x x .

ln 5 + ln 3 ln 5 ln 3 \frac {\ln 5 + \ln 3}{\ln 5 - \ln 3} ln 3 + ln 5 ln 3 + ln 5 \frac {\ln 3 + \ln 5}{\ln 3 + \ln 5} ln 3 + ln 5 ln 3 ln 5 \frac {\ln 3 + \ln 5}{\ln 3 - \ln 5} ln 3 ln 5 ln 3 ln 5 \frac {\ln 3 - \ln 5}{\ln 3 - \ln 5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 19, 2018

3 2 x = 1 5 x + 1 Taking natural logarithm on both sides 2 x ln 3 = ( x + 1 ) ln 15 2 x ln 3 x ln 15 = ln 15 x = ln 15 2 ln 3 ln 15 = ln 3 + ln 5 2 ln 3 ln 3 ln 5 = ln 3 + ln 5 ln 3 ln 5 \begin{aligned} 3^{2x} & = 15^{x+1} & \small \color{#3D99F6} \text{Taking natural logarithm on both sides} \\ 2x \ln 3 & = (x+1)\ln 15 \\ 2x \ln 3 - x\ln 15 & = \ln 15 \\ \implies x & = \frac {\color{#3D99F6} \ln 15}{2\ln 3 - \color{#3D99F6} \ln 15} \\ & = \frac {\color{#3D99F6} \ln 3 + \ln 5}{2\ln 3 - \color{#3D99F6} \ln 3 - \ln 5} \\ & = \boxed{\dfrac {\ln 3 + \ln 5}{\ln 3 - \ln 5}} \end{aligned}

Zee Ell
Dec 21, 2018

3 2 x = 1 5 x + 1 3^{2x} = 15^{x+1}

9 x = 15 × 1 5 x 9^{x} = 15×15^{x}

( 9 15 ) x = 15 ( \frac {9}{15} )^x = 15

( 3 5 ) x = 15 ( \frac {3}{5} )^x = 15

x = log 3 5 15 x = \log _{ \frac {3}{5} } {15}

After applying the change of base theorem:

x = ln 15 ln ( 3 5 ) = ln 3 + ln 5 ln 3 ln 5 x = \frac {\ln 15 } { \ln ( \frac {3}{5} ) } = \boxed { \frac {\ln 3 + \ln 5 } { \ln {3} - \ln5 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...