Indices problem 3 by Dhaval Furia

Algebra Level pending

If ( 5.55 ) x = ( 0.555 ) y = 1000 (5.55)^{x} = (0.555)^{y} = 1000 , then the value of 1 x 1 y \frac {1}{x} - \frac {1}{y} is _____

1 3 \frac {1}{3} 2 3 \frac {2}{3} 3 3 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jul 30, 2020

Knowing that ( 555 100 ) x = 1 0 3 = ( 555 1000 ) y 1 0 3 = ( 555 100 1 10 ) y = ( 1 0 3 / x 1 ) y (\frac{555}{100})^{x} = 10^3 = (\frac{555}{1000})^{y} \Rightarrow 10^3 = (\frac{555}{100} \cdot \frac{1}{10})^y = (10^{3/x - 1})^y , equating both exponents yields:

3 = 3 y x y 3 y = 3 x 1 3 x 3 y = 1 1 x 1 y = 1 3 . 3 = \frac{3y}{x} - y \Rightarrow \frac{3}{y} = \frac{3}{x} - 1 \Rightarrow \frac{3}{x} - \frac{3}{y} = 1 \Rightarrow \boxed{\frac{1}{x} - \frac{1}{y} = \frac{1}{3}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...