Indifinite integration

Calculus Level 2

d x a x + b + a x + b = ? \large \int \frac {dx}{ax+b+\sqrt{ax+b}} = ?

2 ln ( a x + b + 1 ) a + C \frac {2\ln(\sqrt{ax+b+1})}a+C 2 ln ( a x + b ) a + C \frac {2\ln(\sqrt{ax+b})}a+C 2 ln ( a x + b ) a + C \frac {2\ln(ax+b)}a+C 2 ln ( a x + b + 1 ) a + C \frac {2\ln(\sqrt{ax+b}+1)}a+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Oct 5, 2019

Let u = a x + b x = u 2 b a d x = 2 u a d u u = \sqrt{ax+b} \Rightarrow x = \frac{u^2 - b}{a} \Rightarrow dx = \frac{2u}{a} du . Now our original integral becomes:

1 a x + b + a x + b d x 1 u 2 + u 2 u a d u = 2 a d u u + 1 = 2 a l n ( u + 1 ) + C . \int \frac{1}{ax + b + \sqrt{ax+b}} dx \Rightarrow \int \frac{1}{u^2 + u} \cdot \frac{2u}{a} du = \frac{2}{a} \int \frac{du}{u+1} = \frac{2}{a} ln(u+1) + C.

A final re-substitutuion yields: 2 a l n ( a x + b + 1 ) + C . \boxed{\frac{2}{a} ln(\sqrt{ax+b} + 1) + C}.

Mercedes 2
Oct 12, 2019

1 a x + b + a x + b d x \int\frac{1}{ax+b+\sqrt{ax+b}}dx = 1 a x + b ( 1 + a x + b ) d x =\newline\int\frac{1}{\sqrt{ax+b}(1+\sqrt{ax+b})}dx \newline Let u = a x + b d u = a 2 a x + b d x d x = 2 a u d u u=\sqrt{ax+b} \Rightarrow du=\frac{a}{2\sqrt{ax+b}}dx \Rightarrow dx= \frac{2}{a}udu \newline So our integral becomes: 2 a u u 2 + u d u = 2 a 1 1 + u d u = 2 a l n ( u + 1 ) + C = 2 a l n ( a x + b + 1 ) + C ( u = a x + b ) \newline\frac{2}{a}\int\frac{u}{u^{2}+u}du \newline =\frac{2}{a}\int\frac{1}{1+u}du \newline =\frac{2}{a}ln(u+1)+C \newline =\boxed{\frac{2}{a}ln(\sqrt{ax+b}+1)+C} (\because u=\sqrt{ax+b})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...