Indefinite Integration

Calculus Level 2

( 1 ln x 1 ( ln x ) 2 ) d x = ? \large \int \left( \dfrac1{\ln x} - \dfrac1{(\ln x)^2} \right) \, dx = \, ?

Clarification : C C denotes the arbitrary constant of integration .

x ( ln x ) 2 + C \frac{x}{(\ln x)^2}+C 1 ln x + C \frac{1}{\ln x}+C x ln x + C \frac{x}{\ln x}+C 1 ( ln x ) 2 + C \frac{1}{(\ln x)^2}+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Abhishek Sharma
Apr 12, 2015

Let t = ln x \large t=\ln { x } ,

Also d t = d x x \large dt=\frac { dx }{ x } .

Rearranging the above expression we get, d x = e t d t \large dx={ e }^{ t }dt .

( 1 ln x 1 ln x 2 ) d x \large \int { (\frac { 1 }{ \ln { x } } -\frac { 1 }{ { \ln { x } }^{ 2 } } )dx } .

Substituting, e t ( 1 t 1 t 2 ) d t \large \int { { e }^{ t }(\frac { 1 }{ t } -\frac { 1 }{ { t }^{ 2 } } ) } dt

Using the property, e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) \int { { e }^{ x }(f\left( x \right) +f^{ ' }\left( x \right) ) } dx={ e }^{ x }f\left( x \right) . (Proof of the above property is trivial and is left as an exercise to the reader.)

Therefore we get, e t t \large \frac { { e }^{ t } }{ t }

Bringing x x back, e ln x ln x + c \large \frac { { e }^{ \ln { x } } }{ \ln { x } } +c

Simplifying we get, x ln x + c \large \boxed{\frac { x }{ \ln { x } } +c} .

Chew-Seong Cheong
Jan 19, 2015

By inspection we find that:

d d x ( x ln x ) = 1 ln x + x ( 1 ) x ( ln x ) 2 = 1 ln x 1 ( ln x ) 2 \dfrac {d}{dx} \left( \dfrac {x}{\ln {x}} \right) = \dfrac {1}{\ln{x}} + \dfrac {x(-1)}{x(\ln {x})^2} = \dfrac {1}{\ln{x}} - \dfrac {1}{(\ln {x})^2}

( 1 ln x 1 ( ln x ) 2 ) = x ln x + c \displaystyle \Rightarrow \int {\left(\dfrac {1}{\ln{x}} - \dfrac {1}{(\ln {x})^2}\right)} = \boxed{\dfrac {x}{\ln {x}} + c}

This is why I love MCQ questions of indefinite integral. One can go through the options to get the answer.

Shubham Kumar Sinha - 6 years, 4 months ago

If we use integration by parts on first part, second part will cancel out and we get the required result.

That is what I did ;). Nice solution eh?

Ian Limarta - 4 years, 10 months ago

In manual integration:

( 1 ln ( x ) 1 ( ln ( x ) ) 2 ) d x = 1 ln 2 ( x ) 1 ln 2 ( x ) + x ln ( x ) Use integration by parts = x ln ( x ) + C \begin{aligned} \int \left(\frac{1}{\ln(x)} - \frac{1}{(\ln(x))^2} \right)\,dx &= -\int \frac{1}{\ln^2(x)} - \int -\frac{1}{\ln^2(x)} +\frac{x}{\ln(x)} \quad\quad\quad\quad\quad\quad\quad\quad{\text{Use integration by parts}} \\& = \frac{x}{\ln(x)} + C \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...