Inellipse of a triangle

Geometry Level 5

A B C \triangle ABC has B C = 9 , A C = 8 , A B = 7 BC = 9, \hspace{4pt} AC = 8, \hspace{4pt} AB = 7 . We want to draw the inellipse that is tangent to side B C BC at point D D , where B D = 0.3 B C BD = 0.3 BC , and also tangent to side A B AB at point E E where B E = 0.3 B A BE = 0.3 BA . If the center of this inellipse is G ( x 0 , y 0 ) G( x_0, y_0 ) and the lengths of its semi-major and semi-minor axes are a a and b b , then find the sum x 0 + y 0 + a + b x_0 + y_0 + a + b .


The answer is 9.997.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jul 11, 2020

If B B is ( 0 , 0 ) (0, 0) and C C is ( 9 , 0 ) (9, 0) (as pictured), and A A is ( A x , A y ) (A_x, A_y) , then by the distance equation:

A B = ( A x 0 ) 2 + ( A y 0 ) 2 = 7 AB = \sqrt{(A_x - 0)^2 + (A_y - 0)^2} = 7

A C = ( A x 9 ) 2 + ( A y 0 ) 2 = 8 AC = \sqrt{(A_x - 9)^2 + (A_y - 0)^2} = 8

which solves to A x = 11 3 A_x = \frac{11}{3} and A y = 8 5 3 A_y = \frac{8\sqrt{5}}{3} .

Since B E = 0.3 A B BE = 0.3AB and B B is at ( 0 , 0 ) (0, 0) and A A is at ( 11 3 , 8 5 3 ) (\frac{11}{3}, \frac{8\sqrt{5}}{3}) , the coordinates of E E are ( 0.3 11 3 , 0.3 8 5 3 ) = ( 11 10 , 4 5 5 ) (0.3 \cdot \frac{11}{3}, 0.3 \cdot \frac{8\sqrt{5}}{3}) = (\frac{11}{10}, \frac{4\sqrt{5}}{5}) .

Since B D = 0.3 B C BD = 0.3BC and B B is at ( 0 , 0 ) (0, 0) and C C is at ( 9 , 0 ) (9, 0) , the coordinates of D D are ( 0.3 9 , 0.3 0 ) = ( 27 10 , 0 ) (0.3 \cdot 9, 0.3 \cdot 0) = (\frac{27}{10}, 0) .

Using the equations from the link provided in the question, the points of contact are ( u 1 , u 2 ) = ( 27 10 , 0 ) (u_1, u_2) = (\frac{27}{10}, 0) and ( v 1 , v 2 ) = ( 11 10 , 4 5 5 ) (v_1, v_2) = (\frac{11}{10}, \frac{4\sqrt{5}}{5}) , and s = t = 0.3 s = t = 0.3 . That means:

a = 1 s 1 = 1 0.3 1 = 10 7 a = \frac{1}{s - 1} = \frac{1}{0.3 - 1} = -\frac{10}{7}

b = 1 t 1 = 1 0.3 1 = 10 7 b = \frac{1}{t - 1} = \frac{1}{0.3 - 1} = -\frac{10}{7}

the center of the inellipse is:

G ( x 0 , y 0 ) = M = a b a b 1 ( u 1 + v 1 2 , u 2 + v 2 2 ) = ( 190 51 , 40 5 51 ) G(x_0, y_0) = M = \frac{ab}{ab - 1}(\frac{u_1 + v_1}{2}, \frac{u_2 + v_2}{2}) = (\frac{190}{51}, \frac{40\sqrt{5}}{51})

and the conjugate half-diameters of the ellipse are:

f 1 = 1 2 a b a b 1 ( u 1 + v 1 , u 2 + v 2 ) = ( 133 51 , 28 5 51 ) \overrightarrow{f_1} = \frac{1}{2} \frac{\sqrt{ab}}{ab - 1}(u_1 + v_1, u_2 + v_2) = (\frac{133}{51}, \frac{28\sqrt{5}}{51})

f 2 = 1 2 a b a b 1 ( u 1 v 1 , u 2 v 2 ) = ( 8 51 51 , 4 255 51 ) \overrightarrow{f_2} = \frac{1}{2} \sqrt{\frac{ab}{ab - 1}}(u_1 - v_1, u_2 - v_2) = (\frac{8\sqrt{51}}{51}, -\frac{4\sqrt{255}}{51})

Using the equation for the semi-axes lengths derived from this question :

a = 1 2 ( f 1 x 2 + f 1 y 2 + f 2 x 2 + f 2 y 2 ) + 1 2 ( ( f 1 x f 2 y ) 2 + ( f 1 y + f 2 x ) 2 ) ( ( f 1 x + f 2 y ) 2 + ( f 1 y f 2 x ) 2 ) = 3217 + 3151969 578 a = \sqrt{\frac{1}{2}(f_{1x}^2 + f_{1y}^2 + f_{2x}^2 + f_{2y}^2) + \frac{1}{2}\sqrt{((f_{1x} - f_{2y})^2 + (f_{1y} + f_{2x})^2)((f_{1x} + f_{2y})^2 + (f_{1y} - f_{2x})^2)}} = \sqrt{\frac{3217 + \sqrt{3151969}}{578}}

b = 1 2 ( f 1 x 2 + f 1 y 2 + f 2 x 2 + f 2 y 2 ) 1 2 ( ( f 1 x f 2 y ) 2 + ( f 1 y + f 2 x ) 2 ) ( ( f 1 x + f 2 y ) 2 + ( f 1 y f 2 x ) 2 ) = 3217 3151969 578 b = \sqrt{\frac{1}{2}(f_{1x}^2 + f_{1y}^2 + f_{2x}^2 + f_{2y}^2) - \frac{1}{2}\sqrt{((f_{1x} - f_{2y})^2 + (f_{1y} + f_{2x})^2)((f_{1x} + f_{2y})^2 + (f_{1y} - f_{2x})^2)}} = \sqrt{\frac{3217 - \sqrt{3151969}}{578}}

Therefore, x 0 + y 0 + a + b = 190 51 + 40 5 51 + 3217 + 3151969 578 + 3217 3151969 578 = 190 + 40 5 + 3 3217 + 168 255 51 9.997 x_0 + y_0 + a + b = \frac{190}{51} + \frac{40\sqrt{5}}{51} + \sqrt{\frac{3217 + \sqrt{3151969}}{578}} + \sqrt{\frac{3217 - \sqrt{3151969}}{578}} = \frac{190 +40\sqrt{5} + 3\sqrt{3217 + 168\sqrt{255}}}{51} \approx \boxed{9.997} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...