Inequalities # 1

Algebra Level 4

Let a , b , c , d a,b,c,d be positive real numbers. Also a b + b c + c d + d a = 1 ab+bc+cd+da=1 . Then find the minimum value of a 3 b + c + d + b 3 a + c + d + c 3 a + b + d + d 3 a + b + c \large\dfrac{a^3}{b+c+d} + \dfrac{b^3}{a+c+d}+ \dfrac{c^3}{a+b+d}+ \dfrac{d^3}{a+b+c} If your answer is of the form A B \dfrac{A}{B} , where A A and B B are positive coprime integers. Then enter the value of A + B A+B .

Source: RMO training camp 2016


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

a 3 b + c + d + b 3 c + d + a + c 3 d + a + b + d 3 a + b + c \dfrac{a^3}{b+c+d}+\dfrac{b^3}{c+d+a}+\dfrac{c^3}{d+a+b}+\dfrac{d^3}{a+b+c}

= a 4 a ( b + c + d ) + b 4 b ( c + d + a ) + c 4 c ( d + a + b ) + d 4 d ( a + b + c ) =\dfrac{a^4}{a(b+c+d)}+\dfrac{b^4}{b(c+d+a)}+\dfrac{c^4}{c(d+a+b)}+\dfrac{d^4}{d(a+b+c)}

( a 2 + b 2 + c 2 + d 2 ) 2 a b + a c + a d + b c + b d + a b + c d + a c + b c + a d + b d + c d \ge\dfrac{(a^2+b^2+c^2+d^2)^2}{ab+ac+ad+bc+bd+ab+cd+ac+bc+ad+bd+cd} (Cauchy Schwarz inequality)

= ( a 2 + b 2 + c 2 + d 2 ) 2 2 ( 1 + a c + b d ) =\dfrac{(a^2+b^2+c^2+d^2)^2}{2(1+ac+bd)}

( a 2 + b 2 + c 2 + d 2 ) 2 2 ( 1 + ( a 2 + b 2 ) ( c 2 + d 2 ) ) \ge\dfrac{(a^2+b^2+c^2+d^2)^2}{2\left(1+\sqrt{(a^2+b^2)(c^2+d^2)}\right)} (Cauchy Schwarz inequality)

( a 2 + b 2 + c 2 + d 2 ) 2 2 ( 1 + a 2 + b 2 + c 2 + d 2 2 ) \ge\dfrac{(a^2+b^2+c^2+d^2)^2}{2\left(1+\frac{a^2+b^2+c^2+d^2}{2}\right)} (AM-GM inequality)

= ( a 2 + b 2 + c 2 + d 2 ) 2 2 + a 2 + b 2 + c 2 + d 2 =\dfrac{(a^2+b^2+c^2+d^2)^2}{2+a^2+b^2+c^2+d^2}

1 3 \ge\dfrac{1}{3}

Note that a 2 + b 2 + c 2 + d 2 a b + b c + c d + d a = 1 a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1 .

Since f ( x ) = x 2 2 + x f(x)=\dfrac{x^2}{2+x} is an increasing function at x 1 x\ge 1 , minimum occurs when x x is minimize, that is x = 1 x=1 .

Equality holds iff a = b = c = d = 1 2 a=b=c=d=\dfrac{1}{2} .

very well explained(upvoted)!

Rishu Jaar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...