Inequalities 2

Algebra Level 3

x x and y y are positive real numbers such that x + y = 2 x + y = 2 . Find the maximum value of ( x 3 + y 3 ) x 3 y 3 (x^3+y^3) x^3 y^3 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Jain
Feb 28, 2017

Applying A M G M \text AM \geq GM to calculate the maximum value of x 3 y 3 x^{3}y^{3} ,

x + x + x + y + y + y 6 ( x 3 y 3 ) 1 6 \frac{x+x+x+y+y+y}{6} \geq (x^{3}y^{3})^{\frac{1}{6}}

x 3 y 3 1 x^{3}y^{3} \leq 1

x y 1 \boxed{xy \leq 1}

Now, ( x + y ) 3 = 2 3 (x+y)^{3}=2^{3}

x 3 + y 3 + 3 x y ( x + y ) = 8 x^{3}+ y^{3}+3xy(x+y)=8

x 3 + y 3 + 3 x y ( 2 ) = 8 x^{3}+ y^{3}+3xy(2)=8

To maximize x 3 + y 3 x^{3}+ y^{3} , putting x y = 1 xy=1

x 3 + y 3 + 6 8 x^{3}+ y^{3}+6 \leq 8

x 3 + y 3 2 \boxed{x^{3}+ y^{3} \leq 2}

Combining both,

( x 3 + y 3 ) x 3 y 3 2 \boxed{(x^{3}+ y^{3})x^{3}y^{3} \leq 2}

I love your solution Greta work Yash Jain You deserve an appreciation

A Former Brilliant Member - 4 years, 3 months ago

Thanks @Neel Khare

Yash Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...