Solve for x where,
8 − x 3 ∣ x + 2 ∣ − ∣ x ∣ ≥ 0
If the solution set is of the form [ a , b ) , then find ∣ a ∣ + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = 8 − x 3 ∣ x + 2 ∣ − ∣ x ∣ . We note that the denominator 8 − x 3 ≥ 0 for x ≤ 2 and not real for x > 2 . Therefore, f ( x ) is defined for x < 2 . Since 8 − x 3 > 0 for x < 2 , f ( x ) ≥ 0 , when its nominator ∣ x + 2 ∣ − ∣ x ∣ ≥ 0 . There are three cases to be considered:
∣ x + 2 ∣ − ∣ x ∣ = ⎩ ⎪ ⎨ ⎪ ⎧ − x − 2 + x = − 2 < 0 x + 2 + x = 2 x + 2 ≥ 0 x + 2 − x = 2 > 0 ⟹ x ≥ − 1 for x ∈ ( − 2 , ∞ ) for x ∈ [ 2 , 0 ) for x ∈ [ 0 , 2 )
⟹ 8 − x 3 ∣ x + 2 ∣ − ∣ x ∣ ≥ 0 for x ∈ [ − 1 , 2 ) . ⟹ ∣ a ∣ + b = ∣ − 1 ∣ + 2 = 3
Problem Loading...
Note Loading...
Set Loading...
Domain of given inequality-
8 − x 3 x 3 x D ≥ 0 ≤ 8 ≤ 2 ∈ ( − ∞ , 2 )
Since 8 − x 3 is always positive for the given domain,the original expression can be re-written as,
∣ x − 2 ∣ − ∣ x ∣ ≥ 0
The given expression can be solved by dividing it into different cases:
CASE 1
X 1 ≤ − 2 , ∣ x + 2 ∣ ∣ x ∣ − x − 2 + x − 2 ∴ x 1 = − ( x + 2 ) = − x ≥ 0 ≥ 0 ∈ ϕ
CASE 2
− 2 < X 2 ≤ 0 , ∣ x + 2 ∣ ∣ x ∣ x + 2 + x 2 x + 2 x + 1 x x x 2 x 2 = x + 2 = − x ≥ 0 ≥ 0 ≥ 0 ≥ − 1 ∈ [ − 1 , ∞ ) ∈ [ − 1 , ∞ ) ∩ [ − 2 , 0 ] ∈ [ − 1 , 0 ]
CASE 3
X 3 > 0 , ∣ x + 2 ∣ ∣ x ∣ x + 2 − x 2 ∴ x 3 = x + 2 = x ≥ 0 ≥ 0 ∈ ( 0 , ∞ )
X X X ∴ X f i n a l X f i n a l X f i n a l ∈ x 1 ∪ x 2 ∪ x 3 ∈ ϕ ∪ [ − 1 , 0 ] ∪ ( 0 , ∞ ) ∈ [ − 1 , ∞ ) ∈ X ∩ D ∈ [ − 1 , ∞ ) ∩ ( − ∞ , 2 ) ∈ [ − 1 , 2 )
∴ a = − 1 , b = 2 ∣ a ∣ + b = 1 + 2 = 3