Inequalities 2

Algebra Level 3

Solve for x x where,

x + 2 x 8 x 3 0 \large \frac{|x+2|-|x|}{\sqrt{8-x^{3}}}\ge 0

If the solution set is of the form [ a , b ) [a,b) , then find a + b |a|+b .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satwik Murarka
Apr 9, 2017

Domain of given inequality-

8 x 3 0 x 3 8 x 2 D ( , 2 ) \begin{aligned}8-x^{3}&≥0\\ x^{3}&≤8\\ x&≤2\\ D&\in(-\infty,2)\end{aligned}

Since 8 x 3 \sqrt{8-x^{3}} is always positive for the given domain,the original expression can be re-written as,

x 2 x 0 |x-2|-|x|≥0

The given expression can be solved by dividing it into different cases:

CASE 1

X 1 2 , x + 2 = ( x + 2 ) x = x x 2 + x 0 2 0 x 1 ϕ \begin{aligned}X_1≤-2,\\ |x+2|&=-(x+2)\\ |x|&=-x \\ \\ -x-2+x&≥0 \\-2&≥0 \\ \therefore x_1&\in\phi\end{aligned}

CASE 2

2 < X 2 0 , x + 2 = x + 2 x = x x + 2 + x 0 2 x + 2 0 x + 1 0 x 1 x [ 1 , ) x 2 [ 1 , ) [ 2 , 0 ] x 2 [ 1 , 0 ] \begin{aligned}-2<X_2≤0,\\ |x+2|&=x+2\\ |x|&=-x \\ \\ x+2+x&≥0\\ 2x+2&≥0\\ x+1&≥0\\ x&≥-1\\x&\in[-1,\infty)\\x_2&\in[-1,\infty)\cap[-2,0] \\ x_2&\in[-1,0] \end{aligned}

CASE 3

X 3 > 0 , x + 2 = x + 2 x = x x + 2 x 0 2 0 x 3 ( 0 , ) \begin{aligned}X_3>0,\\ |x+2|&=x+2 \\ |x|&=x\\ \\ x+2-x&≥0 \\ 2&≥0 \\ \therefore x_3&\in(0,\infty)\end{aligned}

X x 1 x 2 x 3 X ϕ [ 1 , 0 ] ( 0 , ) X [ 1 , ) X f i n a l X D X f i n a l [ 1 , ) ( , 2 ) X f i n a l [ 1 , 2 ) \begin{aligned}X&\in x_1\cup x_2\cup x_3\\ X&\in \phi \cup [-1,0] \cup (0,\infty) \\ X&\in [-1,\infty)\\ \\ \therefore X_{final}&\in X \cap D\\ X_{final}&\in [-1,\infty)\cap (-\infty,2)\\ X_{final}&\in[-1,2)\end{aligned}

a = 1 , b = 2 a + b = 1 + 2 = 3 \therefore a=-1,b=2 \\|a|+b=1+2=\boxed{3}

Let f ( x ) = x + 2 x 8 x 3 f(x) = \dfrac {|x+2|-|x|}{\sqrt{8-x^3}} . We note that the denominator 8 x 3 0 \sqrt{8-x^3}\ge 0 for x 2 x \le 2 and not real for x > 2 x>2 . Therefore, f ( x ) f(x) is defined for x < 2 x<2 . Since 8 x 3 > 0 \sqrt{8-x^3}> 0 for x < 2 x<2 , f ( x ) 0 f(x) \ge 0 , when its nominator x + 2 x 0 |x+2|-|x| \ge 0 . There are three cases to be considered:

x + 2 x = { x 2 + x = 2 < 0 for x ( 2 , ) x + 2 + x = 2 x + 2 0 x 1 for x [ 2 , 0 ) x + 2 x = 2 > 0 for x [ 0 , 2 ) |x+2|-|x| = \begin{cases} -x-2+x = - 2 \color{#D61F06} < 0 & & \text{for }x \in (-2, \infty) \\ x+2+x = 2x + 2 \ge 0 & \color{#3D99F6} \implies x \ge -1 & \text{for } x \in [2, 0) \\ x + 2-x = 2 \color{#3D99F6} > 0 & & \text{for } x \in [0, 2) \end{cases}

x + 2 x 8 x 3 0 \implies \dfrac {|x+2|-|x|}{\sqrt{8-x^3}} \ge 0 for x [ 1 , 2 ) x \in [-1, 2) . a + b = 1 + 2 = 3 \implies |a|+b = |-1|+2 = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...