Inequalities # 2

Algebra Level 3

If x x , y y and z z are positive reals and x + y + z = 6 x + y + z = 6 , then enter the minimum value of the following expression

c y c x , y , z ( x + 1 y ) 2 \large \sum_{\mathrm{cyc}}^{x,y,z} \left( x + \dfrac1y \right)^2 If your answer is of the form A B \dfrac{A}{B} for positive coprime integers, then enter the value of A + B A + B .

Source : RMO training camp (2016)


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( x + 1 y ) 2 + ( y + 1 z ) 2 + ( z + 1 x ) 2 1 3 ( x + 1 y + y + 1 z + z + 1 x ) 2 Using Titu’s lemma = 1 3 ( 6 + 1 x + 1 y + 1 z ) 2 Note that x + y + z = 6 1 3 ( 6 + 3 2 x + y + z ) 2 Using Titu’s lemma again = 75 4 Equality occurs when x = y = z = 2 \begin{aligned} \left(x+\frac 1y\right)^2 + \left(y+\frac 1z\right)^2 + \left(z+\frac 1x\right)^2 & \ge \frac 13 \left(x+\frac 1y + y+\frac 1z + z+\frac 1x\right)^2 & \small \color{#3D99F6} \text{Using Titu's lemma} \\ & = \frac 13 \left(6+ \frac 1x + \frac 1y + \frac 1z \right)^2 & \small \color{#3D99F6} \text{Note that }x+y+z=6 \\ & \ge \frac 13 \left(6+ \frac {3^2}{x+y+z} \right)^2 & \small \color{#3D99F6} \text{Using Titu's lemma again} \\ & = \frac {75}4 & \small \color{#3D99F6} \text{Equality occurs when }x=y=z=2 \end{aligned}

A + B = 79 \implies A + B = 79

nicely done sir!(+1)

Rishu Jaar - 3 years, 7 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...