Inequalities 3

Algebra Level 4

If a,b and c are positive real numbers such that a + b + c = 1 a+b+c=1 ,then find the minimum value of

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 a ) ( 1 b ) ( 1 c ) \frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Applying AM-GM inequality, we have:

1 + a = a + b + c + a 2 ( a + b ) ( a + c ) = ( 1 c ) ( 1 b ) 1+a=a+b+c+a\ge2\sqrt{(a+b)(a+c)}=\sqrt{(1-c)(1-b)}

Similarly, we have:

1 + b 2 ( 1 a ) ( 1 c ) 1+b\ge2\sqrt{(1-a)(1-c)}

1 + c 2 ( 1 a ) ( 1 b ) ) 1+c\ge2\sqrt{(1-a)(1-b))}

Thus, ( 1 + a ) ( 1 + b ) ( 1 + c ) 8 ( 1 a ) ( 1 b ) ( 1 c ) (1+a)(1+b)(1+c)\ge8(1-a)(1-b)(1-c)

Or ( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 a ) ( 1 b ) ( 1 c ) 8 \dfrac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}\ge8 .

The equality holds if and only if a = b = c = 1 3 a=b=c=\dfrac{1}{3} .

So, the answer is 8 \boxed{8} .

Mohammed Imran
Apr 2, 2020

The answer is 8.

let f ( x ) = 1 + x 1 x f(x)=\frac{1+x}{1-x} . Then, since f ( x ) f(x) is a convex function, by Jensen's Inequality, we have f ( a + b + c 3 ) f ( a ) + f ( b ) + f ( c ) 3 f(\frac{a+b+c}{3}) \leq \frac{f(a)+f(b)+f(c)}{3} this implies that f ( a ) + f ( b ) + f ( c ) 6 f(a)+f(b)+f(c) \geq 6 but we want minimum value of f ( a ) × f ( b ) × f ( c ) f(a) \times f(b) \times f(c) . So, applying A.M.-G.M. inequality on f ( a ) , f ( b ) , f ( c ) f(a), f(b), f(c) , we have f ( a ) × f ( b ) × f ( c ) 8 f(a) \times f(b) \times f(c) \geq \boxed 8

Sarthak Singla
Sep 24, 2015

Applying AM GM inequality,

(1+a)+(1+b)+(1+c)/3)^3>_ (1+a)(1+b)(1+c)

therefore, (4/3)^3>_(1+a)(1+b)(1+c)

similarly, (2/3)^3>_(1-a)(1-b)(1-c)

after solving we get, 2^3>_((1+a)(1+b)(1+c))/((1-a)(1-b)(1-c))

We cannot divided inequality with another inequality

Reynan Henry - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...