Inequalities # 3

Algebra Level 3

Let a , b , c a , b , c be positive real numbers such that a b c = 1 abc = 1 , then what is the minimum value of the expression below

c y c a , b , c 1 a 3 ( b + c ) \large \sum_{\mathrm{cyc}}^{a,b,c} \dfrac{1}{a^3(b+c)}

If your answer is of the form A B \dfrac{A}{B} , where A A and B B are coprime positive integers , then enter the value of A + B A+B .

Source : RMO training camp(2016)


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X = cyc a , b , c 1 a 3 ( b + c ) Multiply up and down by b 2 c 2 = cyc a , b , c b 2 c 2 a 3 b 3 c 2 + a 3 b 2 c 3 Note that a b c = 1 = cyc a , b , c b 2 c 2 a b + c a By Titu’s lemma ( a b + b c + c a ) 2 2 ( a b + b c + c a ) = 1 2 ( a b + b c + c a ) Divided by a b c = 1 = 1 2 ( 1 a + 1 b + 1 c ) By AM-GM inequality 3 2 a b c 3 = 3 2 Equality occurs when a = b = c = 1 \begin{aligned} X & = \sum_{\text{cyc}}^{a,b,c} \frac 1{a^3(b+c)} & \small \color{#3D99F6} \text{Multiply up and down by }b^2c^2 \\ & = \sum_{\text{cyc}}^{a,b,c} \frac {b^2c^2}{a^3b^3c^2+a^3b^2c^3} & \small \color{#3D99F6} \text{Note that }abc = 1 \\ & = \sum_{\text{cyc}}^{a,b,c} \frac {b^2c^2}{ab+ca} & \small \color{#3D99F6} \text{By Titu's lemma} \\ & \ge \frac {(ab+bc+ca)^2}{2(ab+bc+ca)} \\ & = \frac 12(ab+bc+ca) & \small \color{#3D99F6} \text{Divided by }abc = 1 \\ & = \frac 12 \left(\frac 1a+\frac 1b+\frac 1c\right) & \small \color{#3D99F6} \text{By AM-GM inequality} \\ & \ge \frac 3{2\sqrt[3]{abc}} = \frac 32 & \small \color{#3D99F6} \text{Equality occurs when }a=b=c=1 \end{aligned}

A + B = 3 + 2 = 5 \implies A+B = 3+2 = \boxed{5}


References:

nicely done sir!(+1)

Rishu Jaar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...