Inequalities 4

Algebra Level 4

If a 1 , a 2 , , a 37 > 0 a_1,a_2,\cdots,a_{37}>0

( i = 1 37 a i ) ( i = 1 37 1 a i ) K \large\left(\sum\limits_{i=1}^{37}a_i\right)\large\left(\sum\limits_{i=1}^{37}\dfrac{1}{a_i}\right) \ge K

Find K K .

Bonus :

  1. Try with power mean inequality
  2. For ( i = 1 n a i ) ( i = 1 n 1 a i ) X \displaystyle \left(\sum_{i=1}^n a_i\right)\left(\sum_{i=1}^n \dfrac{1}{a_i}\right) \ge X , find X X .

For more inequality problems try my set .


The answer is 1369.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Satwik Murarka
Apr 20, 2017

Relevant wiki : Titu's Lemma

Solution:

By Titu's lemma,

( 1 2 a 1 + 1 2 a 2 + 1 2 a 37 ) ( ( 37 ) 2 a 1 + a 2 + + a 37 ) ( a 1 + a 2 + + a 37 ) ( 1 2 a 1 + 1 2 a 2 + 1 2 a 37 ) ( ( 37 ) 2 a 1 + a 2 + + a 37 ) ( a 1 + a 2 + + a 37 ) K = ( 37 ) 2 = 1369 \begin{aligned}\large\left(\dfrac{1^2}{a_1}+\dfrac{1^2}{a_2}+\cdots\dfrac{1^2}{a_{37}}\right)&≥\large\left(\dfrac{(37)^2}{a_1+a_2+\cdots+a_{37}}\right)\\ \large (a_1+a_2+\cdots+a_{37})\left(\dfrac{1^2}{a_1}+\dfrac{1^2}{a_2}+\cdots\dfrac{1^2}{a_{37}}\right)&≥\large\left(\dfrac{(37)^2}{\cancel{a_1+a_2+\cdots+a_{37}}}\right)\cancel{(a_1+a_2+\cdots+a_{37})}\\ \\ K&=(37)^2\\&=\boxed{1369}\end{aligned}

Tapas Mazumdar
Apr 20, 2017

General result:

As { a i } \{a_i\} is a positive real number, therefore, we can apply AM-HM inequality as follows

1 n i = 1 n a i n i = 1 n 1 a i \dfrac{1}{n} \cdot \sum_{i=1}^n a_i \ge \dfrac{n}{\displaystyle \sum_{i=1}^n \frac{1}{a_i}}

This gives

( i = 1 n a i ) ( i = 1 n 1 a i ) n 2 \left( \sum_{i=1}^n a_i \right) \left( \sum_{i=1}^n \dfrac{1}{a_i} \right) \ge n^2

Thus X = n 2 X = n^2 and putting n = 37 n=37 gives X = 1369 X = \boxed{1369} .

Satwik , I suppose this is AM-HM inequality you're talking about.

Tapas Mazumdar - 4 years, 1 month ago

@Tapas Mazumdar Absolutely correct.

Satwik Murarka - 4 years, 1 month ago

Log in to reply

Thank you. And please do reflect AM-HM in your problem statement not AM-GM.

Tapas Mazumdar - 4 years, 1 month ago
Fidel Simanjuntak
Apr 23, 2017

By Cauchy-Schwarz on { a 1 , a 2 , a 3 , , a 37 } \big\{ \sqrt{a_1} , \sqrt{a_2} , \sqrt{a_3} , \cdots , \sqrt{ a_{37}} \big \} and { 1 a 1 , 1 a 2 , 1 a 3 , , 1 a 37 } \big\{ \dfrac{1}{\sqrt{a_1}}, \dfrac{1}{\sqrt{a_2}}, \dfrac{1}{\sqrt{a_3}}, \cdots, \dfrac{1}{\sqrt{a_{37}}} \big\} , we have

( a 1 + a 2 + a 3 + + a 37 ) ( 1 a 1 + 1 a 2 + 1 a 3 + + 1 a 37 ) ( 1 + 1 + 1 + + 1 + 1 37 times ) 2 ( i = 1 37 a i ) ( i = 1 37 1 a i ) 3 7 2 = 1369 \begin{aligned} \left( a_1 + a_2 + a_3 + \cdots + a_{37} \right) \left( \dfrac{1}{a_1} + \dfrac{1}{a_2} + \dfrac{1}{a_3} + \cdots + \dfrac{1}{a_{37}} \right) & \geq \left( \underbrace{ 1+1+1+\cdots+1+1 }_{37 \text{times}} \right)^2 \\ \left( \large\displaystyle \sum_{i= 1}^{37} a_i \right) \left( \large\displaystyle \sum_{i=1}^{37} \dfrac{1}{a_i} \right) & \geq 37^2 = 1369 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...