a 3 ( b + c ) 1 + b 3 ( c + a ) 1 + c 3 ( a + b ) 1 ≥ B A
The inequality above, where A and B are coprime, holds true for a b c = 1 and a , b , c > 0 . Find A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For positive reals a , b , c it is well known that, b + c a + c + a b + a + b c ≥ 2 3
In the problem we perform the substitutions a x = 1 , b y = 1 , c z = 1 with x y z = 1 to obtain
S = c y c ∑ y + z x 3 y z = c y c ∑ y + z x 2 Since x y z = 1 = c y c ∑ ( y + z x 2 + x ) − c y c ∑ x = c y c ∑ y + z x ( x + y + z ) − c y c ∑ x = ( c y c ∑ x ) ( c y c ∑ y + z x ) − c y c ∑ x = ( c y c ∑ x ) ( c y c ∑ y + z x − 1 ) ≥ ( c y c ∑ x ) ( 2 3 − 1 ) ≥ 3 ( x y z ) 1 / 3 × 2 1 = 2 3
Problem Loading...
Note Loading...
Set Loading...
a 3 ( b + c ) 1 + b 3 ( c + a ) 1 + c 3 ( a + b ) 1 By Titu’s Lemma , for positive reals we have, b 1 a 1 2 + b 2 a 2 2 + ⋯ + b n a n 2 ⟹ ( b 1 + c 1 ) ( a 2 1 ) + ( c 1 + a 1 ) ( b 2 1 ) + ( a 1 + b 1 ) ( c 2 1 ) We have, 3 ( a 1 + b 1 + c 1 ) ⟹ ( a 1 + b 1 + c 1 ) Substituting in ( 1 ) we get, ( b 1 + c 1 ) ( a 2 1 ) + ( c 1 + a 1 ) ( b 2 1 ) + ( a 1 + b 1 ) ( c 2 1 ) ⟹ a 3 ( b + c ) 1 + b 3 ( c + a ) 1 + c 3 ( a + b ) 1 ⟹ A + B = 3 + 2 = a 2 ( b + c ) b c + b 2 ( c + a ) a c + c 2 ( a + b ) a b Since, a b c = 1 = ( b 1 + c 1 ) ( a 2 1 ) + ( c 1 + a 1 ) ( b 2 1 ) + ( a 1 + b 1 ) ( c 2 1 ) ≥ b 1 + b 2 + ⋯ + b n ( a 1 + a 2 + ⋯ + a n ) 2 ≥ 2 ⋅ ( a 1 + b 1 + c 1 ) ( a 1 + b 1 + c 1 ) 2 ≥ 2 ( a 1 + b 1 + c 1 ) ( 1 ) ≥ 3 a b c 1 AM ≥ GM ≥ 3 Since, a b c = 1 ≥ 2 3 ≥ 2 3 = 5