Not just AM-GM

Algebra Level 4

1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) A B \frac{1}{a^{3}(b+c)} + \frac{1}{b^{3}(c+a)} + \frac{1}{c^{3}(a+b)} \geq \frac{A}{B}

The inequality above, where A A and B B are coprime, holds true for a b c = 1 abc = 1 and a , b , c > 0 a, b, c > 0 . Find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Apr 30, 2017

1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) = b c a 2 ( b + c ) + a c b 2 ( c + a ) + a b c 2 ( a + b ) Since, a b c = 1 = ( 1 a 2 ) ( 1 b + 1 c ) + ( 1 b 2 ) ( 1 c + 1 a ) + ( 1 c 2 ) ( 1 a + 1 b ) By Titu’s Lemma , for positive reals we have, a 1 2 b 1 + a 2 2 b 2 + + a n 2 b n ( a 1 + a 2 + + a n ) 2 b 1 + b 2 + + b n ( 1 a 2 ) ( 1 b + 1 c ) + ( 1 b 2 ) ( 1 c + 1 a ) + ( 1 c 2 ) ( 1 a + 1 b ) ( 1 a + 1 b + 1 c ) 2 2 ( 1 a + 1 b + 1 c ) ( 1 a + 1 b + 1 c ) 2 ( 1 ) We have, ( 1 a + 1 b + 1 c ) 3 1 a b c 3 AM GM ( 1 a + 1 b + 1 c ) 3 Since, a b c = 1 Substituting in ( 1 ) we get, ( 1 a 2 ) ( 1 b + 1 c ) + ( 1 b 2 ) ( 1 c + 1 a ) + ( 1 c 2 ) ( 1 a + 1 b ) 3 2 1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) 3 2 A + B = 3 + 2 = 5 \begin{aligned}\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)}&=\dfrac{bc}{a^2(b+c)}+\dfrac{ac}{b^2(c+a)}+\dfrac{ab}{c^2(a+b)}\hspace{4mm}\color{#3D99F6}\small \text{Since, }abc=1\\\\ &=\dfrac{\left(\dfrac{1}{a^2}\right)}{\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}+\dfrac{\left(\dfrac{1}{b^2}\right)}{\left(\dfrac{1}{c}+\dfrac{1}{a}\right)}+\dfrac{\left(\dfrac{1}{c^2}\right)}{\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}\\\\ \text{By Titu's Lemma , for positive reals we have,}&\\ \dfrac{a_1^2}{b_1}+\dfrac{a_2^2}{b_2}+\cdots+\dfrac{a_n^2}{b_n}&\geq \dfrac{\left(a_1+a_2+\cdots+a_n\right)^2}{b_1+b_2+\cdots+b_n}\\\\ \implies\dfrac{\left(\dfrac{1}{a^2}\right)}{\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}+\dfrac{\left(\dfrac{1}{b^2}\right)}{\left(\dfrac{1}{c}+\dfrac{1}{a}\right)}+\dfrac{\left(\dfrac{1}{c^2}\right)}{\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}&\geq\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{2\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\\\\ &\geq\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}{2}\hspace{5mm}\color{#D61F06}(1)\\\\ \text{We have,}\\\\ \dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}{3}&\geq \sqrt [3] {\dfrac{1}{abc}}\hspace{5mm}\color{#3D99F6}\small\text{AM}\geq\text{GM}\\\\ \implies\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)&\geq 3\hspace{5mm}\color{#3D99F6}\small \text{Since, }abc=1\\\\ \text{Substituting in }\color{#D61F06}(1)\color{#333333}\text{ we get,}\\\\ \dfrac{\left(\dfrac{1}{a^2}\right)}{\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}+\dfrac{\left(\dfrac{1}{b^2}\right)}{\left(\dfrac{1}{c}+\dfrac{1}{a}\right)}+\dfrac{\left(\dfrac{1}{c^2}\right)}{\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}&\geq\dfrac{3}{2}\\\\ \implies\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)}&\geq\dfrac{3}{2}\\\\ \implies A+B=3+2&=\color{#EC7300}\boxed{\color{#333333}5}\end{aligned}

For positive reals a , b , c a,b,c it is well known that, a b + c + b c + a + c a + b 3 2 \displaystyle \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}

In the problem we perform the substitutions a x = 1 , b y = 1 , c z = 1 ax=1,by=1,cz=1 with x y z = 1 xyz=1 to obtain

S = c y c x 3 y z y + z = c y c x 2 y + z Since x y z = 1 = c y c ( x 2 y + z + x ) c y c x = c y c x ( x + y + z ) y + z c y c x = ( c y c x ) ( c y c x y + z ) c y c x = ( c y c x ) ( c y c x y + z 1 ) ( c y c x ) ( 3 2 1 ) 3 ( x y z ) 1 / 3 × 1 2 = 3 2 \displaystyle \begin{aligned} S&= \sum\limits_{cyc}\dfrac{x^3 yz}{y+z} \\ &= \sum\limits_{cyc} \dfrac{x^2}{y+z}\quad\text{Since }xyz=1 \; \\ &= \sum\limits_{cyc}\left(\dfrac{x^2}{y+z}+x\right)-\sum\limits_{cyc}x \\ &= \sum\limits_{cyc} \dfrac{x(x+y+z)}{y+z}-\sum\limits_{cyc} x \\ &= \left(\sum_{cyc} x\right)\left(\sum\limits_{cyc}\dfrac{x}{y+z}\right)-\sum\limits_{cyc} x \\ &=\left(\sum\limits_{cyc} x\right)\left(\sum\limits_{cyc}\dfrac{x}{y+z}-1\right) \\ & \ge \left(\sum\limits_{cyc} x\right)\left(\dfrac{3}{2}-1\right) \\ & \ge 3(xyz)^{1/3} \times \dfrac{1}{2} \\ &=\dfrac{3}{2}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...