Can I split them into two?

Algebra Level 3

The real number r = 3 + 5 3 + 5 r=\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3+\sqrt{5}}} satisfies which of these inequalities?

5 < r < 3 \sqrt{5}<r<3 1 2 < r < 2 \frac{1}{\sqrt{2}}<r<\sqrt{2} 2 < r < 5 2<r<\sqrt{5} 2 < r < 2 \sqrt{2}<r<2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Nov 18, 2015

my non-calculus approach: note that 3 + 5 = ( 3 + 5 ) 2 = 8 + 2 15 \sqrt{3}+\sqrt{5}=\sqrt{(\sqrt{3}+\sqrt{5})^2}=\sqrt{8+2\sqrt{15}} and hence: 3 + 5 3 + 5 = 8 + 2 15 3 + 5 \dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3+\sqrt{5}}}= \sqrt{\dfrac{8+2\sqrt{15}}{3+\sqrt{5}}} again, although it is obvious, i tell that 8 + 2 15 > 6 + 2 5 8 + 2 15 3 + 5 > 2 8+2\sqrt{15}>6+2\sqrt{5}\Longrightarrow \sqrt{\dfrac{8+2\sqrt{15}}{3+\sqrt{5}}}>\sqrt{2} the given expression can be written as using a similar analysis: 8 + 2 15 < 8 + 2 16 = 16 < 20 = 12 + 4 4 < 4 ( 3 + 5 ) 8+2\sqrt{15}<8+2\sqrt{16}=16<20=12+4\sqrt{4}<4(3+\sqrt{5}) 8 + 2 15 3 + 5 < 4 8 + 2 15 3 + 5 < 2 \dfrac{8+2\sqrt{15}}{3+\sqrt{5}}<4\Longrightarrow \sqrt{\dfrac{8+2\sqrt{15}}{3+\sqrt{5}}}<2 so 2 < 3 + 5 3 + 5 < 2 \boxed{\sqrt{2}<\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3+\sqrt{5}}}<2}

this problem seems similar to this note

Aareyan Manzoor - 5 years, 6 months ago

First note that ( 3 + 5 ) 2 = 8 + 2 15 > 6 + 2 5 = 2 ( 3 + 5 ) . (\sqrt{3} + \sqrt{5})^{2} = 8 + 2\sqrt{15} \gt 6 + 2\sqrt{5} = 2*(3 + \sqrt{5}).

This implies that 3 + 5 3 + 5 > 2 ( 3 + 5 ) 3 + 5 = 2 . \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3 + \sqrt{5}}} \gt \dfrac{\sqrt{2*(3 + \sqrt{5})}}{3 + \sqrt{5}} = \sqrt{2}.

Next, we look at the function f ( x ) = x + 8 x f(x) = \sqrt{x} + \sqrt{8 - x} for 0 x 8. 0 \le x \le 8. we have that

f ( x ) = 1 2 ( 1 x 1 8 x ) = 0 f'(x) = \dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}} - \dfrac{1}{\sqrt{8 - x}}\right) = 0 when x = 8 x x = 4. x = 8 - x \Longrightarrow x = 4.

Since f ( x ) f(x) is continuous on this interval and f ( 4 ) = 4 > f ( 0 ) f(4) = 4 \gt f(0) we know that f ( x ) f(x) is maximized when x = 4. x = 4.

This implies that ( 3 + 5 ) < ( 4 + 4 ) = 4. (\sqrt{3} + \sqrt{5}) \lt (\sqrt{4} + \sqrt{4}) = 4. We also know that 3 + 5 < 3 + 1 = 4 , 3 + \sqrt{5} \lt 3 + 1 = 4, and so

3 + 5 3 + 5 < 4 4 = 2. \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3 + \sqrt{5}}} \lt \dfrac{4}{\sqrt{4}} = 2.

Noting that all other options exclude the interval ( 2 , 2 ) , (\sqrt{2},2), we can conclude that the correct option is

2 < 3 + 5 3 + 5 < 2 . \boxed{\sqrt{2} \lt \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3 + \sqrt{5}}} \lt 2}.

Mohaiminul Adil
Nov 19, 2015

This problem is really pretty, am I right guys? Cool....refresh

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...