Inequality #2

Algebra Level 5

cyc ( a , b , c ) a 3 + b 3 a b + 1 3 2 m 4 4 . \large \sum_{\text{cyc}(a,b,c)}\frac{\sqrt{a^3+b^3}}{ab+1} \geq \dfrac{3\sqrt{2}\sqrt[4]{m}}{4}.

If the inequality above is true for all positive real numbers a , b , c a,b,c with constant m m such that a + b + c = a b c a+b+c=abc , find the value of m m .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A little bit of trigonometry: Let a=b=c= tan(60°), not sure if this is valid but 27 is the result for m

Siddharth Bhatt
May 18, 2015

Notice that ( a + b ) ( b + c ) ( c + a ) 8 ( a + b + c ) ( a b + b c + c a ) 9 8 ( a + b + c ) 3 a b c ( a + b + c ) 9 = 8 3 a 2 b 2 c 2 9 . (a+b)(b+c)(c+a) \geq \dfrac{8(a+b+c)(ab+bc+ca)}{9} \geq \dfrac{8(a+b+c)\sqrt{3abc(a+b+c)}}{9}=\dfrac{8\sqrt{3} a^2b^2c^2}{9}. Hence, ( a 3 + b 3 ) ( b 3 + c 3 ) ( c 3 + a 3 ) a b ( a + b ) b c ( b + c ) c a ( c + a ) 8 3 a 4 b 4 c 4 9 . (a^3+b^3)(b^3+c^3)(c^3+a^3) \geq ab(a+b)\cdot bc(b+c) \cdot ca(c+a) \geq \dfrac{8\sqrt{3}a^4b^4c^4}{9}. Now, using the AM-GM inequality, we have ( a b + 1 ) ( b c + 1 ) ( c a + 1 ) = ( a b c + a ) ( a b c + b ) ( a b c + c ) a b c 1 a b c ( a b c + a + a b c + b + a b c + c 3 ) 3 = 64 a 2 b 2 c 2 27 . (ab+1)(bc+1)(ca+1)=\dfrac{(abc+a)(abc+b)(abc+c) }{abc}\leq \dfrac{1}{abc}\left(\dfrac{abc+a+abc+b+abc+c}{3}\right)^3=\dfrac{64a^2b^2c^2}{27}. Therefore, c y c a 3 + b 3 a b + 1 3 ( a 3 + b 3 ) ( b 3 + c 3 ) ( c 3 + a 3 ) ( a b + 1 ) ( b c + 1 ) ( c a + 1 ) 3 3 8 3 a 4 b 4 c 4 9 64 a 4 b 4 c 4 27 3 = 3 2 27 4 4 . \sum_{cyc}\frac{\sqrt{a^3+b^3}}{ab+1} \geq 3\sqrt[3]{\dfrac{\sqrt{(a^3+b^3)(b^3+c^3)(c^3+a^3)}}{(ab+1)(bc+1)(ca+1)}} \geq 3\sqrt[3]{\dfrac{\sqrt{\dfrac{8\sqrt{3} a^4b^4c^4}{9}}}{\dfrac{64a^4b^4c^4}{27}}}=\dfrac{3\sqrt{2}\sqrt[4]{27}}{4}.

Are you using the unstated assumption that a + b + c = a b c a + b + c = abc ?

Calvin Lin Staff - 6 years ago

Solution full of AM-GM! We could have used Jensen as well in the last as well.

Kartik Sharma - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...