Inequality-2

Algebra Level pending

Let x + y + z = 1 x+y+z=1 then:

x z + y + y x + z + z x + y \frac{x}{\sqrt{z+y}}+\frac{y}{\sqrt{x+z}}+\frac{z}{\sqrt{x+y}} has a minimum value of A B \sqrt{ \dfrac AB} , where A A and B B are coprime positive integers. What is A + B A+B ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 11, 2018

Relevant wiki: Cauchy-Schwarz Inequality

Note that x + y + z = 1 x+y+z=1 x + y = 1 z \implies x+y = 1-z , y + z = 1 x y+z = 1-x and z + x = 1 y z+x=1-y . Using Hölder's inequality as follows:

( x 1 x + y 1 y + z 1 z ) 1 3 ( x 1 x + y 1 y + z 1 z ) 1 3 ( x ( 1 x ) + y ( 1 y ) + z ( 1 z ) ) 1 3 x + y + z = 1 \begin{aligned} \left(\frac x{\sqrt{1-x}} + \frac y{\sqrt{1-y}} + \frac z{\sqrt{1-z}}\right)^\frac 13 \left(\frac x{\sqrt{1-x}} + \frac y{\sqrt{1-y}} + \frac z{\sqrt{1-z}}\right)^\frac 13 \bigg(x(1-x) + y(1-y) + z(1-z) \bigg)^\frac 13 & \ge x + y + z = 1 \end{aligned}

Cubing both sides:

( x 1 x + y 1 y + z 1 z ) 2 ( x ( 1 x ) + y ( 1 y ) + z ( 1 z ) ) 1 \begin{aligned} \left(\frac x{\sqrt{1-x}} + \frac y{\sqrt{1-y}} + \frac z{\sqrt{1-z}}\right)^2 \bigg(x(1-x) + y(1-y) + z(1-z) \bigg) & \ge 1 \end{aligned}

( x 1 x + y 1 y + z 1 z ) 2 1 x + y + z ( x 2 + y 2 + z 2 ) By Cauchy-Schwartz inequity: 1 1 1 3 = 3 2 ( x + y + z ) 2 3 ( x 2 + y 2 + z 2 ) x 2 + y 2 + z 2 1 3 x y + z + y z + x + z x + y 3 2 Equality occurs when x = y = z = 1 3 \begin{aligned} \implies \left(\frac x{\sqrt{1-x}} + \frac y{\sqrt{1-y}} + \frac z{\sqrt{1-z}}\right)^2 & \ge \frac 1{x+y+z-\color{#3D99F6}(x^2+y^2+z^2)} & \small \color{#3D99F6} \text{By Cauchy-Schwartz inequity:} \\ & \ge \frac 1{1-\color{#3D99F6}\frac 13} = \frac 32 & \small \color{#3D99F6} (x+y+z)^2 \le 3(x^2+y^2+z^2) \implies x^2+y^2+z^2 \ge \frac 13 \\ \implies \frac x{\sqrt{y+z}} + \frac y{\sqrt{z+x}} + \frac z{\sqrt{x+y}} & \ge \sqrt{\frac 32} & \small \color{#3D99F6} \text{Equality occurs when }x=y=z =\frac 13 \end{aligned}

Therefore, A + B = 3 + 2 = 5 A+B = 3+2 = \boxed 5 .

Thank you, nice solution.

Hana Wehbi - 2 years, 7 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 2 years, 7 months ago
David Vreken
Nov 10, 2018

Let a 1 = x z + y a_1 = \frac{x}{\sqrt{z + y}} , a 2 = y x + z a_2 = \frac{y}{\sqrt{x + z}} , and a 3 = z x + y a_3 = \frac{z}{\sqrt{x + y}} .

Then by the AM-GM inequality , a 1 + a 2 + a 3 3 a 1 a 2 a 3 3 \frac{a_1 + a_2 + a_3}{3} \geq \sqrt[3]{a_1a_2a_3} , and a 1 + a 2 + a 3 a_1 + a_2 + a_3 has a minimum value when a 1 = a 2 = a 3 a_1 = a_2 = a_3 . Therefore, x z + y = y x + z = z x + y \frac{x}{\sqrt{z + y}} = \frac{y}{\sqrt{x + z}} = \frac{z}{\sqrt{x + y}} .

Since x + y + z = 1 x + y + z = 1 , z + y = x 1 z + y = x - 1 , x + z = y 1 x + z = y - 1 , and x + y = z 1 x + y = z - 1 . Substituting these in the above equation, we have a minimum value when x x 1 = y y 1 = z z 1 \frac{x}{\sqrt{x - 1}} = \frac{y}{\sqrt{y - 1}} = \frac{z}{\sqrt{z - 1}} , so x = y = z x = y = z .

Since x = y = z x = y = z and x + y + z = 1 x + y + z = 1 , x = y = z = 1 3 x = y = z = \frac{1}{3} , and the minimum value is x z + y + y x + z + z x + y = 1 3 1 3 + 1 3 + 1 3 1 3 + 1 3 + 1 3 1 3 + 1 3 = 3 2 \frac{x}{\sqrt{z + y}} + \frac{y}{\sqrt{x + z}} + \frac{z}{\sqrt{x + y}} = \frac{\frac{1}{3}}{\sqrt{\frac{1}{3} + \frac{1}{3}}} + \frac{\frac{1}{3}}{\sqrt{\frac{1}{3} + \frac{1}{3}}} + \frac{\frac{1}{3}}{\sqrt{\frac{1}{3} + \frac{1}{3}}} = \sqrt{\frac{3}{2}} .

Therefore, A = 3 A = 3 and B = 2 B = 2 , and A + B = 5 A + B = \boxed{5} .

Thank you, nice solution.

Hana Wehbi - 2 years, 7 months ago
Hana Wehbi
Nov 11, 2018

Relevant wiki: Jensen's Inequality

First solution :

Let f ( x ) = x 1 x , f ( x ) > 0. f(x)=\frac{x}{\sqrt{1-x}}, f’’(x)>0.

Therefore, x 1 x 3 s 1 s , where s = x + y + z 3 = 1 3 \sum\frac{x}{\sqrt{1-x}} \ge \frac{3s}{\sqrt{1-s}}, \text { where } s=\frac{x+y+z}{3}=\frac{1}{3} .

By Jensen's inequality: x z + y + y x + z + z x + y 3 2 . \frac{x}{\sqrt{z+y}}+\frac{y}{\sqrt{x+z}}+\frac{z}{\sqrt{x+y}} \ge \sqrt{ \dfrac 32}.

Second Solution :

x z + y + y x + z + z x + y 1 3 ( x + y + z ) ( 1 y + z + 1 z + x + 1 x + y ) \frac{x}{\sqrt{z+y}}+\frac{y}{\sqrt{x+z}}+\frac{z}{\sqrt{x+y}} \ge \frac{ 1}{3}(x+y+z)(\frac{1}{\sqrt{y+z}}+\frac{1}{\sqrt{z+x}} +\frac{1}{\sqrt{x+y}})

We know that f ( x ) = 1 x f{(x)}=\frac{1}{\sqrt{x}} is a convex function. so by Jensen's inequality:

x z + y + y x + z + z x + y 1 3 ( 3 × 1 2 3 ( x + y + z ) ) = 3 2 . \frac{x}{\sqrt{z+y}}+\frac{y}{\sqrt{x+z}}+\frac{z}{\sqrt{x+y}}\ge \frac{1}{3}\Big(3\times\frac{1}{\sqrt{\frac{2}{3}(x+y+z)}}\Big)=\sqrt{\dfrac32.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...