Inequality -- 2

Algebra Level 2

Knowing

{ ( 1 a 1 ) ( 1 b 1 ) ( 1 c 1 ) = M a + b + c = 1 \begin{cases} \left(\dfrac 1a - 1\right)\left(\dfrac 1b - 1\right)\left(\dfrac 1c - 1\right) = M \\ a + b + c = 1 \end{cases}

where a a , b b , and c c are positive real numbers, find the minimum value for M M .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 28, 2019

The Cauchy-Schwarz Inequality gives a 1 + b 1 + c 1 = ( a 1 + b 1 + c 1 ) ( a + b + c ) ( a a + b b + c c ) 2 = 9 a^{-1} + b^{-1} + c^{-1} \; = \; \big(a^{-1} + b^{-1} + c^{-1}\big)\big(a + b + c\big) \; \ge \; \left(\frac{\sqrt{a}}{\sqrt{a}} + \frac{\sqrt{b}}{\sqrt{b}} + \frac{\sqrt{c}}{\sqrt{c}}\right)^2 \; = \; 9 with equality when a = b = c = 1 3 a=b=c=\tfrac13 . Thus M = ( a 1 1 ) ( b 1 1 ) ( c 1 1 ) = 1 a b c ( 1 a b + 1 a c + 1 b c ) + ( 1 a + 1 b + 1 c ) 1 = 1 a + 1 b 1 c 1 9 1 = 8 \begin{aligned} M & = \; \big(a^{-1}-1\big)\big(b^{-1}-1\big)\big(c^{-1}-1\big) \; =\ \frac{1}{abc} - \left(\frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc}\right) + \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - 1 \\ & = \; \frac{1}{a} + \frac{1}{b} - \frac{1}{c} - 1 \;\ge \; 9 - 1 \; = \; \boxed{8} \end{aligned} with equality achieved when a = b = c = 1 3 a=b=c=\tfrac13 .

Kevin Xu
Aug 28, 2019

M = ( 1 a 1 ) ( 1 b 1 ) ( 1 c 1 ) M = (\frac 1a - 1)(\frac 1b - 1)(\frac 1c - 1) \\ M = ( 1 a a ) ( 1 b b ) ( 1 c c ) M = (\frac {1-a}{a})(\frac {1-b}{b})(\frac {1-c}{c}) \\ Since a + b + c = 1 a+b+c=1 . \quad 1 a = b + c ; 1 b = a + c ; 1 c = a + b 1-a=b+c; 1-b = a+c; 1-c = a+b \\ M = ( b + c a ) ( a + c b ) ( a + b c ) M = (\frac {b+c}{a})(\frac {a + c}{b})(\frac {a+b}{c}) \\ M 2 b c 2 a c 2 a b a b c M \geq \frac {2\sqrt {bc} \cdot 2\sqrt{ac} \cdot 2\sqrt {ab}}{abc} [By AM-GM Inequality] \\ M 8 a b c a b c M \geq \frac {8abc}{abc} \\ M 8 M \geq 8 \\ M m i n = 8 M_{min} = 8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...