Inequality

Algebra Level 3

If a , b , c R + a,b,c\in \mathbb R^{+} , then find the minimum value of

a 4 + 1 ( b + c ) 2 + b 4 + 1 ( c + a ) 2 + c 4 + 1 ( a + b ) 2 \frac{a^{4}+1}{(b+c)^{2}}+\frac{b^{4}+1}{(c+a)^{2}}+\frac{c^{4}+1}{(a+b)^{2}}


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aditya Khurmi
Aug 8, 2017

Let the expression be given by S.

Now, we use the results:

a 4 + 1 2 a 2 a^{4}+1 \geq 2a^{2} by AM-GM

and

2 ( b 2 + c 2 ) ( b + c ) 2 2(b^{2}+c^{2}) \geq (b+c)^{2} (which follows since on simplifying this is equivalent to ( b c ) 2 0 (b-c)^{2} \geq 0 which is true.)

( b 2 + c 2 ) ( b + c ) 2 2 \implies (b^{2}+c^{2}) \geq \frac{(b+c)^{2}}{2}

and

( 2 a 2 b 2 + c 2 ) 3 \sum (\frac{2a^{2}}{b^{2}+c^{2}}) \geq 3 which is indirectly the Nesbitt's inequality

[you can get its proof here: https://brilliant.org/wiki/nesbitts-inequality/ But a simple proof is: a b + c + b c + a + c a + b = a 2 a b + a c + b 2 b c + b a + c 2 c a + c b \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^{2}}{ab+ac}+\dfrac{b^{2}}{bc+ba}+\dfrac{c^{2}}{ca+cb}

( a + b + c ) 2 2 ( a b + b c + c a ) \geq \dfrac{(a+b+c)^{2}}{2(ab+bc+ca)} (By Titu's Lemma)

3 2 \geq \dfrac{3}{2} ]

[Here we have used the well-known identity ( a + b + c ) 2 3 ( a b + b c + c a ) (a+b+c)^{2} \geq 3(ab+bc+ca) ]

Thus, we get

2 S 2 a 2 b 2 + c 2 + 2 b 2 c 2 + a 2 + 2 c 2 a 2 + b 2 3 2S \geq \dfrac{2a^{2}}{b^{2}+c^{2}}+\dfrac{2b^{2}}{c^{2}+a^{2}}+\dfrac{2c^{2}}{a^{2}+b^{2}} \geq 3

And hence the minimum value is 1.5 \boxed {1.5} attained when a = b = c = 1 a=b=c=1

ALITER

As a direct consequence of the AM-GM inequality,

a 4 + 1 2 a 2 a^{4}+1 \geq 2a^{2}

Further, by the Nesbitt's inequality, we know that a b + c + b c + a + c a + b 3 2 . \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge \dfrac{3}{2}. \ _\square

Thus, applying the Cauchy-Schwarz inequality we get

( 1 + 1 + 1 ) ( a 2 ( b + c ) 2 + b 2 ( c + a ) 2 + c 2 ( a + b ) 2 ) ( a b + c + b c + a + c a + b ) 2 9 4 ) (1+1+1) \left(\dfrac{a^{2}}{(b+c)^{2}}+\dfrac{b^{2}}{(c+a)^{2}}+\dfrac{c^{2}}{(a+b)^{2}}\right) \geq \left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^{2} \ge \dfrac{9}{4})

And thus we apply these 2 results and get that the minimum value of the expression is 1.5 \boxed {1.5}

The given expression can be written as:

[ a ² b + c ] 2 + [ b ² a + c ] 2 + [ c ² b + a ] 2 + [ 1 b + c ] 2 + [ 1 a + c ] 2 + [ 1 a + c ] 2 [\frac{a²}{b+c}]^{2} + [\frac{b²}{a+c}]^{2} + [\frac{c²}{b+a}]^{2} + [\frac{1}{b+c}]^{2} + [\frac{1}{a+c}]^{2} + [\frac{1}{a+c}]^{2}

Now, applying Titu's lemma , we get:

[ a ² b + c ] 2 + [ b ² a + c ] 2 + [ c ² b + a ] 2 + [ 1 b + c ] 2 + [ 1 a + c ] 2 + [ 1 a + c ] 2 1 3 [ a ² b + c + b ² c + a + c ² a + b ] 2 + 1 3 [ 1 b + c + 1 c + a + 1 a + b ] 2 [\frac{a²}{b+c}]^{2} + [\frac{b²}{a+c}]^{2} + [\frac{c²}{b+a}]^{2} + [\frac{1}{b+c}]^{2} + [\frac{1}{a+c}]^{2} + [\frac{1}{a+c}]^{2} \ge \frac{1}{3}[\frac{a²}{b+c} + \frac{b²}{c+a} + \frac{c²}{a+b}]^{2} + \frac{1}{3} [\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}]^{2}

Again applying Titu's lemma inside the two brackets , we get :

[ a ² b + c ] 2 + [ b ² a + c ] 2 + [ c ² b + a ] 2 + [ 1 b + c ] 2 + [ 1 a + c ] 2 + [ 1 a + c ] 2 1 3 [ 1 2 ( a + b + c ) 2 a + b + c ] 2 + 1 3 [ 1 2 ( 3 ) 2 a + b + c ] 2 [\frac{a²}{b+c}]^{2} + [\frac{b²}{a+c}]^{2} + [\frac{c²}{b+a}]^{2} + [\frac{1}{b+c}]^{2} + [\frac{1}{a+c}]^{2} + [\frac{1}{a+c}]^{2} \ge \frac{1}{3} [\frac{1}{2}\frac{(a + b + c)^{2}}{a+b+c}]^{2} + \frac{1}{3} [\frac{1}{2}\frac{(3)^{2}}{a+b+c}]^{2}

[ a ² b + c ] 2 + [ b ² a + c ] 2 + [ c ² b + a ] 2 + [ 1 b + c ] 2 + [ 1 a + c ] 2 + [ 1 a + c ] 2 1 12 [ a + b + c ] 2 + 27 4 1 [ a + b + c ] 2 [\frac{a²}{b+c}]^{2} + [\frac{b²}{a+c}]^{2} + [\frac{c²}{b+a}]^{2} + [\frac{1}{b+c}]^{2} + [\frac{1}{a+c}]^{2} + [\frac{1}{a+c}]^{2} \ge \frac{1}{12}[a + b + c]^{2} + \frac{27}{4}\frac{1}{[a+b+c]^{2}}

Now using AM GM inequality ,we get:

1 12 [ a + b + c ] 2 + 27 4 1 [ a + b + c ] 2 3 2 \frac{1}{12}[a + b + c]^{2} + \frac{27}{4}\frac{1}{[a+b+c]^{2}} \ge \frac{3}{2}

Note : In all the above inequalities , equality will occur when a = b = c = 1.

Try my problem 'A Cubic Inequality'

Maria Paszkiewicz
May 23, 2020

From the form of the expression there is no reason why any of the variables a , b , c a,\; b, \; c should be the biggest or the smallest one. I take then c = b = a c = b = a . Edit: apparently it is not true and I am not able to prove it. I leave the solution just to be able to come back to this problem later. Having this, I want

f ( a ) = a 4 + 1 ( a + a ) 2 = a 4 + 1 4 a 2 = a 2 4 + 1 4 a 2 f(a) = \frac{a^4+1}{(a+a)^2} = \frac{a^4+1}{4a^2} = \frac{a^2}{4} + \frac{1}{4a^2}

to attain the minimum value. I calculate the derivative with respect to a a , which is

f ( a ) = a 2 1 2 a 3 f'(a) = \frac{a}{2} - \frac{1}{2a^3} .

I want to find a a for which f ( a ) = 0 f'(a)=0 . I find a = 1 a=1 . For this value the function f ( a = 1 ) f(a=1) has an extremum. The derivative f ( a ) f'(a) for a < 1 a<1 is negative and for a > 1 a >1 is positive which means that f ( a ) f(a) has its minimum for a = 1 a = 1 . The minimum value of the expression from the task is then

3 f ( a = 1 ) = 1.5 3f(a=1) = \boxed{1.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...