Inequality

Algebra Level 2

Is the inequality TRUE or FALSE ?

x 4 + y 4 + 8 8 x y {x^4+y^4+8\ge 8xy}

for any x , y R + x,y\in\mathbb{R^+} .

True False Can't be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vilakshan Gupta
May 26, 2018

If x , y x,y are positive ,then by simply applying AM-GM 2 times , we get , x 4 + y 4 + 8 2 x 2 y 2 + 8 2 4 x y = 8 x y x^4+y^4 +8 \geq 2x^2y^2 +8 \geq 2\cdot 4xy=8xy

Equality occurs at x = y = 2 x=y=\sqrt{ 2}

Note that if x , y x,y are not positive, AM-GM inequality cannot be applied.

S P
May 26, 2018

Rewrite x 4 + y 4 + 8 8 x y x^4+y^4+8\ge 8xy as x 4 + 4 + y 4 + 4 8 x y x^4+4+y^4+4\ge 8xy

Now by AM-GM inequality \color{#3D99F6}{\text{AM-GM inequality}} on x 4 + 4 x^4+4 we get

x 4 + 4 2 x 4 4 x 4 + 4 2 ( 2 x 2 ) x 4 + 4 4 x 2 (i) \begin{aligned} \dfrac{x^4+4}{2}\ge \sqrt{x^4\cdot 4}\\& \implies x^4+4\ge 2(2x^2)\\& \implies x^4+4\ge 4x^2 ~-~ \text{(i)}\end{aligned}

Again by AM-GM inequality \color{#3D99F6}{\text{AM-GM inequality}} on y 4 + 4 y^4+4 we have

y 4 + 4 2 y 4 4 y 4 + 4 2 ( 2 y 2 ) y 4 + 4 4 y 2 (ii) \begin{aligned} \dfrac{y^4+4}{2}\ge \sqrt{y^4\cdot 4} \\& \implies y^4+4\ge 2(2y^2) \\& \implies y^4+4\ge 4y^2 ~-~ \text{(ii)} \end{aligned}

Now by (i) + (ii) \text{(i)}+\text{(ii)}

x 4 + y 4 + 8 4 x 2 + 4 y 2 (iii) x^4+y^4+8\ge 4x^2+4y^2 ~-~ \text{(iii)}

now by using AM-GM inequality \color{#3D99F6}{\text{AM-GM inequality}} on the R.H.S of (iii) \text{(iii)} we have

4 x 2 + 4 y 2 2 4 x 2 4 y 2 4 x 2 + 4 y 2 2 4 x y 4 x 2 + 4 y 2 8 x y \begin{aligned} \dfrac{4x^2+4y^2}{2}\ge \sqrt{4x^2\cdot 4y^2} \\& \implies 4x^2+4y^2\ge 2\cdot 4xy\\& \implies 4x^2+4y^2\ge 8xy\end{aligned}

Since we have x 4 + y 4 + 8 4 x 2 + 4 y 2 x^4+y^4+8\ge 4x^2+4y^2 and 4 x 2 + 4 y 2 8 x y 4x^2+4y^2\ge 8xy

Hence, x 4 + y 4 + 8 8 x y x^4+y^4+8\ge 8xy

\therefore the inequality is TRUE

1.It must be mentioned that x , y x,y are positive if you want to apply AM-GM.

2.Equality case should be mentioned for completeness sake.

Vilakshan Gupta - 3 years ago
Adrian Mišak
Oct 8, 2018

x 4 + y 4 + 4 + 4 4 ( 4 4 x 4 y 4 ) 1 / 4 \frac{x^{4}+y^{4}+4+4}{4} \geq (4 \cdot 4 \cdot x^4 \cdot y^4)^{1/4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...