Inequality (4)

Algebra Level 2

Let a , b , c a,b,c be positive reals such that a + b + c = a b c a+b+c=abc , then 1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 m n \frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt {c^2+1}}\le \frac{m}{n} for positive integers m , n m,n , and gcd ( m , n ) = 1 \gcd(m,n)=1 .

What is m + n = ? m+n=?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hana Wehbi
Mar 6, 2018

First Solution: \underline{\textit{First Solution:}}

Set a = 1 x , b = 1 y , c = 1 z x y + y z + z x = 1 a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z} \implies xy+yz+zx=1 and the inequality: x x 2 + 1 3 2 \sum \frac{x}{\sqrt{x^2+1}}\le \frac{3}{2} ,

But x x 2 + 1 = x x 2 + x y + x z + z y = x x + y x x + z \sum \frac{x}{\sqrt{x^2+1}} = \sum \frac{x}{\sqrt{x^2+xy+xz+zy}} = \sum \sqrt{\frac{x}{x+y}\frac{x}{x+z}} ,

Also, x x + y x x + z x x + y + x x + z 2 \sum \sqrt{\frac{x}{x+y}\frac{x}{x+z}} \le \frac{\frac{x}{x+y}+\frac{x}{x+z}}{2} ,

Thus, x x + y x x + z x x + y + x x + z + y x + y + y y + z + z z + y + z z + x 2 = 3 2 \sum \sqrt{\frac{x}{x+y}\frac{x}{x+z}} \le \frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y} +\frac{y}{y+z}+\frac{z}{z+y}+\frac{z}{z+x}}{2} = \frac{3}{2} ,

Second Solution: \underline{\textit{Second Solution:}}

Subsitute a = tan x , b = tan y , c = tan z where x + y + z = π a=\tan x, b=\tan y, c=\tan z \text{ where } x+y+z=\pi ,

then cos x + cos y + cos z 3 2 \cos x+\cos y+\cos z \le \frac{3}{2}

Third Solution: \underline{\textit{Third Solution:}}

By AM-GM we have a + b + c 3 a b c 3 and since a + b + c = a b c ( a b c ) 2 27 a+b+c \ge 3\sqrt[3]{abc} \text { and since } a+b+c = abc \implies (abc)^2 \ge 27 ,

We can rewrite the inequality as: 1 3 \frac{1}{3} ( 1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 ) 1 2 (\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}) \le \frac{1}{2} ,

since f ( a ) = 1 a 2 + 1 f(a)=\frac{1}{\sqrt{a^2+1}} is concave, we apply Jensen's inequality:

1 3 f ( a ) + 1 3 f ( b ) + 1 3 f ( c ) f ( a + b + c 3 ) = f ( a b c 3 ) = 1 ( a b c ) 2 3 2 + 1 1 2 ( a b c ) 2 27 \frac{1}{3} f(a)+ \frac{1}{3} f(b) + \frac{1}{3} f(c) \le f( \frac{a+b+c}{3}) = f(\frac{abc}{3})= \frac{1}{\sqrt{\frac{(abc)^2}{3^2}+1}} \le \frac{1}{2} \iff (abc)^2\ge 27

Vitor Juiz
Mar 5, 2018

Escreva em portugues porque eu nao entendi

LUCAS MACHADO - 3 years, 3 months ago

Desfocado,quero ver fazer questao de macho

LUCAS MACHADO - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...