Inequality for grade 10

Algebra Level 5

Let P = x + y P=x+y , where x x and y y are real numbers satisfying x x + 6 = y + 6 y x-\sqrt{x+6}=\sqrt{y+6}-y .

Find the product of the maximum value and minimum value of P P .


Source: Hanoi grade 10 selection test.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Jun 9, 2016

Here's my Vieta approach, rewrite the condition x + y = x + 6 + y + 6 x+y=\sqrt{x+6}+\sqrt{y+6} Now we set a = x + 6 0 , b = y + 6 0 a=\sqrt{x+6}\geq 0, b=\sqrt{y+6}\geq 0 , then { a 2 + b 2 12 = a + b a 2 + b 2 12 = P \begin{cases} a^2+b^2-12=a+b \\ a^2+b^2-12=P\end{cases} { a + b = P a b = 1 2 ( P 2 P 12 ) \Leftrightarrow\begin{cases} a+b=P \\ ab=\frac{1}{2}(P^2-P-12)\end{cases} So a , b a,b will be the roots of X 2 P X + 1 2 ( P 2 P 12 ) = 0 X^2-PX+\frac{1}{2}(P^2-P-12)=0 In order for the above equation to have 2 non-negative roots { Δ 0 a + b 0 a b 0 \begin{cases}\Delta\geq 0\\ a+b\geq 0\\ ab\geq 0\end{cases} { P 2 2 P 24 0 P 2 P 12 0 P 0 \Leftrightarrow\begin{cases} P^2-2P-24\leq 0 \\ P^2-P-12\geq 0\\ P\geq 0\end{cases} { P [ 4 ; 6 ] P ( ; 3 ] [ 4 ; + ) P 0 \Rightarrow\begin{cases} P\in[-4;6] \\ P\in (-\infty;-3]\cup [4;+\infty) \\ P\geq 0\end{cases} So we have 4 P 6 4\leq P\leq 6 and the product is 24 24 , to find the equality cases, we subtitute the value of P P into the equation and solve for x , y x,y

Nice solution!

Son Nguyen - 5 years ago
Son Nguyen
Jun 9, 2016

P = x + y = x + 6 + y + 6 P=x+y=\sqrt{x+6}+\sqrt{y+6} so that P = x + y > 0 P=x+y> 0

For the maximum value,by applying C-S inequality we have:

P 2 = ( x + y ) 2 = ( x + 6 + y + 6 ) 2 2 ( x + y + 12 ) = 2 P + 24 P^{2}=(x+y)^2=(\sqrt{x+6}+\sqrt{y+6})^2\leq 2(x+y+12)=2P+24 And P 2 2 P 24 0 ( P 6 ) ( P + 4 ) 0 P 6 P^2-2P-24\leq0 \Rightarrow (P-6)(P+4)\leq 0 \Leftrightarrow P\leq 6

The equality holds when x = y = 3 x=y=3

For the minimum value,by applying this inequality: A + B A + B \sqrt{A}+\sqrt{B}\geq \sqrt{A+B}

P = x + y = x + 6 + y + 6 x + y + 12 P P + 12 P=x+y=\sqrt{x+6}+\sqrt{y+6}\geq \sqrt{x+y+12}\Rightarrow P\geq \sqrt{P+12}

And P 2 P 12 0 ( P 4 ) ( P + 3 ) 0 P 4 P^2-P-12\geq 0\Leftrightarrow (P-4)(P+3)\geq 0\Rightarrow P\geq 4

The equality holds when x = 10 ; y = 6 x=10;y=-6 or it's permutation.

So that 4 P 6 4\leq P\leq 6 and it's product is 24 24

Very nice proof

Raisingh Mandloi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...