Let a , b , c , d > 0 be real numbers. Find the minimum value of the expression:
b + c + d a + a + c + d b + a + b + d c + a + b + c d + a b + c + d + b a + c + d + c a + b + d + d a + b + c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
let us take a+b+c+d = x
then the above will be ====>
= b + c + d x − ( b + c + d ) + a + c + d x − ( a + c + d ) + a + b + d x − ( a + b + d ) + a + b + c x − ( a + b + c ) + a x − a + b x − b + c x − c + d x − d
On further simplification :-
= -4 + (x)( b + c + d 1 + b + c + d 1 + b + c + d 1 + b + c + d 1 ) -4 +(x)( a 1 + b 1 + c 1 + d 1 ) ----- A
on applying AM-HM inequality on a 1 , b 1 , c 1 , d 1 and on b + c + d 1 , a + c + d 1 , a + b + d 1 , a + b + c 1 WE GET ====>
∑ c y c a 1 > x 1 6 ------- B
∑ c y c b + c + d 1 > 3 x 1 6 -------- C
on adding B and C and subtracting 8 we get A's MINIMUM :-
A_{_min_} = -8 + 16 + 3 1 6 = 3 4 0 = 13.33