Inequality for minimum value

Algebra Level pending

Let a , b , c , d > 0 a, b, c, d > 0 be real numbers. Find the minimum value of the expression:

a b + c + d + b a + c + d + c a + b + d + d a + b + c + b + c + d a + a + c + d b + a + b + d c + a + b + c d \frac{a}{b+c+d}+ \frac{b}{a+c+d} + \frac{c}{a+b+d} + \frac{d}{a+b+c}+ \frac{b+c+d}{a} + \frac{a+c+d}{b} + \frac{a+b+d}{c}+ \frac{a+b+c}{d}


The answer is 13.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaniranjan Saraf
Jun 23, 2018

let us take a+b+c+d = x

then the above will be ====>

= x ( b + c + d ) b + c + d \frac{x-(b+c+d)}{b+c+d} + x ( a + c + d ) a + c + d \frac{x-(a+c+d)}{a+c+d} + x ( a + b + d ) a + b + d \frac{x-(a+b+d)}{a+b+d} + x ( a + b + c ) a + b + c \frac{x-(a+b+c)}{a+b+c} + x a a \frac{x-a}{a} + x b b \frac{x-b}{b} + x c c \frac{x-c}{c} + x d d \frac{x-d}{d}

On further simplification :-

= -4 + (x)( 1 b + c + d \frac{1}{b+c+d} + 1 b + c + d \frac{1}{b+c+d} + 1 b + c + d \frac{1}{b+c+d} + 1 b + c + d \frac{1}{b+c+d} ) -4 +(x)( 1 a \frac{1}{a} + 1 b \frac{1}{b} + 1 c \frac{1}{c} + 1 d \frac{1}{d} ) ----- A

on applying AM-HM inequality on 1 a \frac{1}{a} , 1 b \frac{1}{b} , 1 c \frac{1}{c} , 1 d \frac{1}{d} and on 1 b + c + d \frac{1}{b+c+d} , 1 a + c + d \frac{1}{a+c+d} , 1 a + b + d \frac{1}{a+b+d} , 1 a + b + c \frac{1}{a+b+c} WE GET ====>

c y c \sum_{cyc} 1 a \frac{1}{a} > 16 x \frac{16}{x} ------- B

c y c \sum_{cyc} 1 b + c + d \frac{1}{b+c+d} > 16 3 x \frac{16}{3x} -------- C

on adding B and C and subtracting 8 we get A's MINIMUM :-

A_{_min_} = -8 + 16 + 16 3 \frac{16}{3} = 40 3 \frac{40}{3} = 13.33

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...