Inequality Problem

Algebra Level 4

x 2 + 5 4 y 2 + 5 z 2 x y 4 y z 2 3 z + 46 9 \large x^2 + \frac54 y^2 + 5z^2 - xy - 4yz - \frac23 z + \frac{46}9

Let x , y x,y and z z be real numbers, find the minimum value of the expression above.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anand Raj
Jul 26, 2015

Using some manipulations we can write this in form of (x-y/2)² + (z-⅓)² + (2z-y)² + 5... Thus 5 is the minimum value

Rushikesh Jogdand
May 18, 2016

y = x 2 + 5 4 y 2 + 5 z 2 x y 4 y z 2 3 z + 46 9 y = x^2 + \frac54 y^2 + 5z^2 - xy - 4yz - \frac23 z + \frac{46}9 y = ( x y y ) 2 + ( y 2 z ) 2 + ( z 1 3 ) 2 + 5 \Rightarrow y = \left(x-\frac{y}{y}\right)^2+\left(y-2z\right)^2+\left(z-\frac{1}{3}\right)^2+5 We know ( something ) 2 0 (\text{something})^2 \geq 0
thus, y = ( x y y ) 2 + ( y 2 z ) 2 + ( z 1 3 ) 2 + 5 5 y=\left(x-\frac{y}{y}\right)^2+\left(y-2z\right)^2+\left(z-\frac{1}{3}\right)^2+5\geq 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...