Inequality Revisited

Algebra Level 5

Find the maximum value of k k such that \forall ( x , y , z ) R + (x,y,z) \in \mathbb{R^{+}} , x + y + z = 1 x+y+z=1 the following is true.

x y + z + y z + x + z x + y k + x y + y z + z x \sqrt{xy+z}+\sqrt{yz+x}+\sqrt{zx+y}\geq k+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}


For more problems try My Problems and THRILLER


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Kumar Jain
Apr 26, 2017

By AM-GM Inequality , we have

x + y 2 x y x+y \geq 2\sqrt{xy}

x + y + z 2 x y + z \Rightarrow x+y+z \geq 2\sqrt{xy}+z

1 2 x y + z \Rightarrow 1 \geq 2\sqrt{xy}+z

z 2 z x y + z 2 \Rightarrow z \geq 2z\sqrt{xy}+z^2

x y + z x y + z 2 + 2 z x y \Rightarrow xy+z\geq xy + z^2 + 2z\sqrt{xy}

x y + z ( x y + z ) 2 \Rightarrow xy+z \geq \left(\sqrt{xy} + z\right)^2

x y + z x y + z \Rightarrow \sqrt{xy+z} \geq \sqrt{xy} + z


Similarly ,

y z + x y z + x \sqrt{yz+x} \geq \sqrt{yz} +x

z x + y z x + y \sqrt{zx+y} \geq \sqrt{zx} + y


Adding the three inequalities gives ,

x y + z + y z + x + z x + y 1 + x y + y z + z x \sqrt{xy+z} + \sqrt{yz+x}+\sqrt{zx+y} \geq 1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}


Therefore k = 1 \boxed{k=1} with equality when x = y = z = 1 3 \boxed{x=y=z=\dfrac13}

Wow! Nice use of am gm, and a good question too.

Kanta Sharma - 4 years, 1 month ago

Log in to reply

Thanks :):)

Ankit Kumar Jain - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...