P = 2 a 2 + b c a 2 + 2 b 2 + c a b 2 + 2 c 2 + a b c 2
Let a , b and c be real numbers satisfying a + b + c = 0 , find the value of P such that P is defined.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
No need for [2] and [3].
a
3
+
b
3
+
c
3
−
3
a
b
c
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
a
b
−
b
c
−
c
a
)
.
I
f
a
+
b
+
c
=
0
,
a
3
+
b
3
+
c
3
=
3
a
b
c
.
P
=
2
a
2
+
b
c
a
2
+
2
b
2
+
c
a
b
2
+
2
c
2
+
a
b
c
2
=
(
2
a
2
+
b
c
)
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
∑
c
y
c
a
2
∗
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
4
∗
b
2
∗
c
2
+
2
a
(
b
3
+
c
3
)
+
a
∗
a
b
c
.
This will simplify our calculations.
1
s
t
C
y
c
l
e
a
2
∗
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
4
(
a
2
∗
b
2
∗
c
2
)
+
2
a
3
(
b
3
+
c
3
)
+
a
3
∗
a
b
c
2
n
d
C
y
c
l
e
b
2
∗
(
2
c
2
+
a
b
)
(
2
a
2
+
b
c
)
=
4
(
a
2
∗
b
2
∗
c
2
)
+
2
b
3
(
c
3
+
a
3
)
+
b
3
∗
a
b
c
3
r
d
C
y
c
l
e
c
2
∗
(
2
a
2
+
b
c
)
(
2
b
2
+
c
a
)
=
4
(
a
2
∗
b
2
∗
c
2
)
+
2
c
3
(
a
3
+
b
3
)
+
c
3
∗
a
b
c
∴
∑
c
y
c
a
2
∗
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
1
2
(
a
2
∗
b
2
∗
c
2
)
+
4
(
a
3
∗
b
3
+
b
3
∗
c
3
+
c
3
∗
a
3
)
+
(
a
3
+
b
3
+
c
3
)
∗
a
b
c
,
B
u
t
a
3
+
b
3
+
c
3
=
3
a
b
c
.
∴
∑
c
y
c
=
1
5
(
a
2
∗
b
2
∗
c
2
)
+
4
(
a
3
∗
b
3
+
b
3
∗
c
3
+
c
3
∗
a
3
)
(
2
a
2
+
b
c
)
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
2
∗
(
4
(
a
2
∗
b
2
∗
c
2
)
+
2
a
3
(
b
3
+
c
3
)
+
a
3
∗
a
b
c
)
We have seen from 1st cycle that
a
2
∗
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
4
(
a
2
∗
b
2
∗
c
2
)
+
2
a
3
(
b
3
+
c
3
)
+
a
3
∗
a
b
c
.
b
c
∗
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
b
c
∗
{
4
∗
b
2
∗
c
2
+
2
a
(
b
3
+
c
3
)
+
a
∗
a
b
c
.
}
=
4
b
3
∗
c
3
+
2
a
b
c
(
b
3
+
c
3
)
+
a
2
∗
b
2
∗
c
2
.
∴
(
2
a
2
+
b
c
)
(
2
b
2
+
c
a
)
(
2
c
2
+
a
b
)
=
{
8
(
a
2
∗
b
2
∗
c
2
)
+
4
a
3
(
b
3
+
c
3
)
+
2
a
3
∗
a
b
c
}
+
{
4
b
3
∗
c
3
+
2
a
b
c
(
b
3
+
c
3
)
+
a
2
∗
b
2
∗
c
2
}
.
=
(
8
(
a
2
∗
b
2
∗
c
2
)
+
{
2
a
3
∗
a
b
c
+
2
a
b
c
(
b
3
+
c
3
)
}
+
a
2
∗
b
2
∗
c
2
)
+
(
4
a
3
(
b
3
+
c
3
)
+
4
b
3
∗
c
3
)
=
1
5
(
a
2
∗
b
2
∗
c
2
)
+
4
(
a
3
∗
b
3
+
b
3
∗
c
3
+
c
3
∗
a
3
)
∴
P
=
1
Since the calculations are little involved I have given them in details for those who need.
Note the following that makes calculations easy. 1. Before first cycle, I have calculated multiplication only of two groups. 2. Once we get the first cycle, the remaining simply rotate the variables, that is, for a, put b, for b, put c , and for c, put a. Please take care to do it at the spot every time. If you try to change all say a's at a time, you will land into a mess. 3. see I have not calculated denominator fully. Previous calculations have been used.
Problem Loading...
Note Loading...
Set Loading...
Put P under a common denominator:
P = 2 a 2 + b c a 2 + 2 b 2 + c a b 2 + 2 c 2 + a b c 2 = ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) + b 2 ( 2 a 2 + b c ) ( 2 c 2 + a b ) + c 2 ( 2 a 2 + b c ) ( 2 b 2 + c a ) = ( ( 2 a b ) 2 + 2 c ( a 3 + b 3 ) + a b c 2 ) ) ( 2 c 2 + a b ) a 2 ( ( 2 b c ) 2 + 2 a ( b 3 + c 3 ) + a 2 b c ) + b 2 ( ( 2 a c ) 2 + 2 b ( a 3 + c 3 ) + a b 2 c ) + c 2 ( ( 2 a b ) 2 + 2 c ( a 3 + b 3 ) + a b c 2 ) = 8 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( a 3 + b 3 + c 3 ) 1 2 ( a b c ) 2 + 2 a 3 ( b 3 + c 3 ) + a 4 b c + 2 b 3 ( a 3 + c 3 ) + a b 4 c + 2 c 3 ( a 3 + b 3 ) + a b c 4 = 9 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( a 3 + b 3 + c 3 ) 1 2 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) + a b c ( a 3 + b 3 + c 3 ) [1]
It is given that for real numbers a, b, c a + b + c = 0 ( a + b + c ) 2 = 0 2 ⇒ a 2 + b 2 + c 2 = − 2 ( a b + a c + b c ) ( a + b + c ) 3 = 0 3 a 3 + b 3 + c 3 + 3 a b c ( a + b + c ) + 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 6 a b c = 0 a 3 + b 3 + c 3 = − [ 3 a b c ( 0 ) + 3 ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) + 6 a b c ] a 3 + b 3 + c 3 = − 3 ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) − 6 a b c [2]
Since ( a 2 + b 2 + c 2 ) ( a + b + c ) are defined, ( a 2 + b 2 + c 2 ) ( a + b + c ) = a 3 + b 3 + c 3 + a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b − 2 ( a b + a c + b c ) ( 0 ) = 0 = a 3 + b 3 + c 3 + a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b = − ( a 3 + b 3 + c 3 ) [3]
Combining [1] and [2] gives a 3 + b 3 + c 3 = 3 ( a 3 + b 3 + c 3 ) − 6 a b c = > a 3 + b 3 + c 3 = 3 a b c
When this is put back into equation [1], we get P = 9 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( 3 a b c ) 1 2 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) + a b c ( 3 a b c ) = 1 5 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) 1 5 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) = 1