Inequality. Right?

Algebra Level 4

P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b \large\ P = \frac { { a }^{ 2 } }{ 2{ a }^{ 2 } + bc } + \frac { { b }^{ 2 } }{ 2b^{ 2 } + ca } + \frac { { c }^{ 2 } }{ 2c^{ 2 } + ab }

Let a a , b b and c c be real numbers satisfying a + b + c = 0 a + b + c = 0 , find the value of P P such that P P is defined.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matt O
Dec 28, 2015

Put P under a common denominator:

P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b = a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) + b 2 ( 2 a 2 + b c ) ( 2 c 2 + a b ) + c 2 ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) = a 2 ( ( 2 b c ) 2 + 2 a ( b 3 + c 3 ) + a 2 b c ) + b 2 ( ( 2 a c ) 2 + 2 b ( a 3 + c 3 ) + a b 2 c ) + c 2 ( ( 2 a b ) 2 + 2 c ( a 3 + b 3 ) + a b c 2 ) ( ( 2 a b ) 2 + 2 c ( a 3 + b 3 ) + a b c 2 ) ) ( 2 c 2 + a b ) = 12 ( a b c ) 2 + 2 a 3 ( b 3 + c 3 ) + a 4 b c + 2 b 3 ( a 3 + c 3 ) + a b 4 c + 2 c 3 ( a 3 + b 3 ) + a b c 4 8 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( a 3 + b 3 + c 3 ) = 12 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) + a b c ( a 3 + b 3 + c 3 ) 9 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( a 3 + b 3 + c 3 ) P = \frac{a^{2}}{2a^{2}+bc} + \frac{b^{2}}{2b^{2}+ca}+ \frac{c^{2}}{2c^{2}+ab} \\ = \frac{a^{2}(2b^{2}+ca)(2c^{2}+ab) + b^{2}(2a^{2}+bc)(2c^{2}+ab) + c^{2}(2a^{2}+bc)(2b^{2}+ca)}{(2a^{2}+bc)(2b^{2}+ca)(2c^{2}+ab)} \\ = \frac{a^{2}((2bc)^{2} + 2a(b^{3} + c^{3}) + a^{2}bc) + b^{2}((2ac)^{2} + 2b(a^{3} + c^{3}) + ab^{2}c) + c^{2}((2ab)^{2} + 2c(a^{3} + b^{3}) + abc^{2})}{((2ab)^{2} + 2c(a^{3} + b^{3}) + abc^{2}))(2c^{2} + ab)} \\ = \frac{12(abc)^{2} + 2a^{3}(b^{3} + c^{3}) + a^{4}bc + 2b^{3}(a^{3} + c^{3}) + ab^{4}c + 2c^{3}(a^{3} + b^{3}) + abc^{4}}{8(abc)^{2} + 4((ab)^{3} + (bc)^{3} + (ac)^{3}) + 2abc(a^{3}+b^{3}+c^{3})} \\ = \frac{12(abc)^{2} + 4((ab)^{3} + (ac)^{3} + (bc)^{3}) + abc(a^{3} + b^{3} + c^{3})}{9(abc)^{2} + 4((ab)^{3} + (bc)^{3} + (ac)^{3}) + 2abc(a^{3}+b^{3}+c^{3})} \\ [1]

It is given that for real numbers a, b, c a + b + c = 0 ( a + b + c ) 2 = 0 2 a 2 + b 2 + c 2 = 2 ( a b + a c + b c ) ( a + b + c ) 3 = 0 3 a 3 + b 3 + c 3 + 3 a b c ( a + b + c ) + 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 6 a b c = 0 a 3 + b 3 + c 3 = [ 3 a b c ( 0 ) + 3 ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) + 6 a b c ] a 3 + b 3 + c 3 = 3 ( a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b ) 6 a b c a+b+c=0 \\ (a+b+c)^{2} = 0^{2} \Rightarrow a^{2}+ b^{2}+c^{2} = -2(ab+ac+bc) \\ (a+b+c)^{3} = 0^{3} \\ a^{3}+ b^{3}+c^{3} + 3abc(a+b+c) + 3(a^{2}b + a^{2}c + ab^{2} + b^{2}c + ac^{2} + bc^{2}) + 6abc = 0 \\ a^{3}+ b^{3}+c^{3} = -[3abc(0) + 3(a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b) + 6abc] \\ a^{3}+ b^{3}+c^{3} = -3(a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b) - 6abc \\ [2]

Since ( a 2 + b 2 + c 2 ) ( a + b + c ) (a^{2}+b^{2}+c^{2})(a+b+c) are defined, ( a 2 + b 2 + c 2 ) ( a + b + c ) = a 3 + b 3 + c 3 + a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b 2 ( a b + a c + b c ) ( 0 ) = 0 = a 3 + b 3 + c 3 + a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b = ( a 3 + b 3 + c 3 ) (a^{2}+b^{2}+c^{2})(a+b+c) = a^{3}+b^{3}+c^{3} + a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b \\ -2(ab+ac+bc)(0) = 0 = a^{3}+b^{3}+c^{3} + a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b \\ a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b = -(a^{3}+b^{3}+c^{3}) [3]

Combining [1] and [2] gives a 3 + b 3 + c 3 = 3 ( a 3 + b 3 + c 3 ) 6 a b c = > a 3 + b 3 + c 3 = 3 a b c a^{3}+ b^{3}+c^{3} = 3(a^{3} + b^{3} + c^{3}) - 6abc => a^{3} + b^{3} + c^{3} = 3abc

When this is put back into equation [1], we get P = 12 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) + a b c ( 3 a b c ) 9 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) + 2 a b c ( 3 a b c ) = 15 ( a b c ) 2 + 4 ( ( a b ) 3 + ( a c ) 3 + ( b c ) 3 ) 15 ( a b c ) 2 + 4 ( ( a b ) 3 + ( b c ) 3 + ( a c ) 3 ) = 1 P = \frac{12(abc)^{2} + 4((ab)^{3} + (ac)^{3} + (bc)^{3}) + abc(3abc)}{9(abc)^{2} + 4((ab)^{3} + (bc)^{3} + (ac)^{3}) + 2abc(3abc)} = \frac{15(abc)^{2} + 4((ab)^{3} + (ac)^{3} + (bc)^{3})}{15(abc)^{2} + 4((ab)^{3} + (bc)^{3} + (ac)^{3})} = \boxed{1}

No need for [2] and [3].
a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) . I f a + b + c = 0 , a 3 + b 3 + c 3 = 3 a b c . a^3+b^3+c^3 -3abc=(a+b+c)(a^2+b^2+c^2 -ab-bc-ca).\\ If\ \ a+b+c=0, \ \ a^3+b^3+c^3= 3abc.

Niranjan Khanderia - 5 years ago

P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b = c y c a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) = 4 b 2 c 2 + 2 a ( b 3 + c 3 ) + a a b c . This will simplify our calculations. 1 s t C y c l e a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) = 4 ( a 2 b 2 c 2 ) + 2 a 3 ( b 3 + c 3 ) + a 3 a b c 2 n d C y c l e b 2 ( 2 c 2 + a b ) ( 2 a 2 + b c ) = 4 ( a 2 b 2 c 2 ) + 2 b 3 ( c 3 + a 3 ) + b 3 a b c 3 r d C y c l e c 2 ( 2 a 2 + b c ) ( 2 b 2 + c a ) = 4 ( a 2 b 2 c 2 ) + 2 c 3 ( a 3 + b 3 ) + c 3 a b c c y c a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) = 12 ( a 2 b 2 c 2 ) + 4 ( a 3 b 3 + b 3 c 3 + c 3 a 3 ) + ( a 3 + b 3 + c 3 ) a b c , B u t a 3 + b 3 + c 3 = 3 a b c . c y c = 15 ( a 2 b 2 c 2 ) + 4 ( a 3 b 3 + b 3 c 3 + c 3 a 3 ) ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) = 2 ( 4 ( a 2 b 2 c 2 ) + 2 a 3 ( b 3 + c 3 ) + a 3 a b c ) We have seen from 1st cycle that a 2 ( 2 b 2 + c a ) ( 2 c 2 + a b ) = 4 ( a 2 b 2 c 2 ) + 2 a 3 ( b 3 + c 3 ) + a 3 a b c . b c ( 2 b 2 + c a ) ( 2 c 2 + a b ) = b c { 4 b 2 c 2 + 2 a ( b 3 + c 3 ) + a a b c . } = 4 b 3 c 3 + 2 a b c ( b 3 + c 3 ) + a 2 b 2 c 2 . ( 2 a 2 + b c ) ( 2 b 2 + c a ) ( 2 c 2 + a b ) = { 8 ( a 2 b 2 c 2 ) + 4 a 3 ( b 3 + c 3 ) + 2 a 3 a b c } + { 4 b 3 c 3 + 2 a b c ( b 3 + c 3 ) + a 2 b 2 c 2 } . = ( 8 ( a 2 b 2 c 2 ) + { 2 a 3 a b c + 2 a b c ( b 3 + c 3 ) } + a 2 b 2 c 2 ) + ( 4 a 3 ( b 3 + c 3 ) + 4 b 3 c 3 ) = 15 ( a 2 b 2 c 2 ) + 4 ( a 3 b 3 + b 3 c 3 + c 3 a 3 ) P = 1 P =\frac{a^{2}}{2a^{2}+bc} + \frac{b^{2}}{2b^{2}+ca}+ \frac{c^{2}}{2c^{2}+ab} \\ =\dfrac {\sum_{cyc}a^2*(2b^2+ca)(2c^2+ab)} {(2a^{2}+bc)(2b^{2}+ca)(2c^{2}+ab)} \\ \color{#3D99F6}{(2b^2+ca)(2c^2+ab)=4*b^2*c^2+2a(b^3+c^3) + a*abc.}\\ \ \ \ \ \text{This will simplify our calculations.} \\ 1st \ Cycle\ \ \ a^2*(2b^2+ca)(2c^2+ab)=4(a^2*b^2*c^2) + 2a^3(b^3+c^3)+a^3*abc\\ 2nd \ Cycle\ \ b^2*(2c^2+ab)(2a^2+bc)=4(a^2*b^2*c^2) + 2b^3(c^3+a^3)+b^3*abc\\ 3rd \ Cycle\ \ \ c^2*(2a^2+bc)(2b^2+ca)=4(a^2*b^2*c^2) + 2c^3(a^3+b^3)+c^3*abc\\ \therefore\ \sum_{cyc}a^2*(2b^2+ca)(2c^2+ab)\\ =12(a^2*b^2*c^2)+4(a^3*b^3+b^3*c^3+c^3*a^3) +( a^3+b^3+c^3)*abc,\\ But\ a^3+b^3+c^3= 3abc.\\ \therefore\ \ \sum_{cyc}= \color{#3D99F6}{15(a^2*b^2*c^2)+4(a^3*b^3+b^3*c^3+c^3*a^3) } \\ (2a^{2}+bc)(2b^{2}+ca)(2c^{2}+ab)={\Large 2*}(4(a^2*b^2*c^2) + 2a^3(b^3+c^3)+a^3*abc)\\ \text{We have seen from 1st cycle that }\\ a^2*(2b^2+ca)(2c^2+ab)=4(a^2*b^2*c^2) + 2a^3(b^3+c^3)+a^3*abc.\\ bc*\color{#3D99F6}{(2b^2+ca)(2c^2+ab)=bc*\{4*b^2*c^2+2a(b^3+c^3) + a*abc.\}}\\ =4b^3*c^3+2abc(b^3+c^3)+a^2*b^2*c^2.\\ \therefore\ \ (2a^{2}+bc)(2b^{2}+ca)(2c^{2}+ab)\\ =\{8(a^2*b^2*c^2) + 4a^3(b^3+c^3)+2a^3*abc\} + \{4b^3*c^3+2abc(b^3+c^3)+a^2*b^2*c^2\}. \\ ={ \Large (}8(a^2*b^2*c^2)+\{2a^3*abc+ 2abc(b^3+c^3)\}+a^2*b^2*c^2 { \Large )} \ \ + \ \ { \Large (} 4a^3(b^3+c^3)+4b^3*c^3{ \Large )} \\ = \color{#3D99F6}{15(a^2*b^2*c^2)+4(a^3*b^3+b^3*c^3+c^3*a^3) } \\ \therefore\ \ P= \color{#D61F06}{1} \\\ \ \ \\ \\
Since the calculations are little involved I have given them in details for those who need.
Note the following that makes calculations easy. 1. Before first cycle, I have calculated multiplication only of two groups. 2. Once we get the first cycle, the remaining simply rotate the variables, that is, for a, put b, for b, put c , and for c, put a. Please take care to do it at the spot every time. If you try to change all say a's at a time, you will land into a mess. 3. see I have not calculated denominator fully. Previous calculations have been used.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...