Inequality Sum HMMT Style

Algebra Level 3

\substack 1 a a < b b < c 1 3 a 7 b 1 1 c \large \sum_{\substack{1\leq a\\a<b\\b<c}} \frac{1}{3^a7^b11^c}

Evaluate the sum above, where a , b , c N a,\ b, \ c \in \mathbb{N} . Express your answer as x y \dfrac {x}{y} , where x x and y y are coprime positive integers. Enter your answer as x + y x+y .


The answer is 174801.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Sep 13, 2018

We can simplify the given sum as \begin{aligned} \sum_{\substack{1\leq a \\ a < b \\ b < c}} \frac{1}{3^a7^b11^c} &= \sum_{a=1}^\infty \frac{1}{3^a} \sum_{b=a+1}^\infty \frac{1}{7^b} \sum_{c=b+1}^\infty \frac{1}{11^c} \\ &= \left(\sum_{a=1}^\infty \frac{1}{231^a}\right) \left(\sum_{b=1}^\infty \frac{1}{77^b}\right) \left(\sum_{c=1}^\infty \frac{1}{11^c}\right) \\ &= \left(\frac{\frac{1}{231}}{1 - \frac{1}{231}}\right) \left(\frac{\frac{1}{77}}{1 - \frac{1}{77}}\right) \left(\frac{\frac{1}{11}}{1 - \frac{1}{11}}\right) \\ &= \frac{1}{230} \cdot \frac{1}{76} \cdot \frac{1}{10} \\ &= \frac{1}{174800} \end{aligned}

Therefore x = 1 x=1 and y = 174800 , y=174800, giving an answer of x + y = 174801 x+y = \boxed{174801}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...