Inequality with log

Algebra Level 3

log 4 log 3 log 2 ( x 2 + 7 x ) 0 \large \log_4 \log_3 \log_2 \left(x^2 + 7x\right) \geq 0

If the ranges of real number x x are ( , a ] [ b , ) (-\infty,a] \cup [b,\infty) , where a a and b b are integers , then find a b \dfrac{a}{b} .


The answer is -8.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 26, 2016

log 4 log 3 log 2 ( x 2 + 7 x ) 0 log 3 log 2 ( x 2 + 7 x ) 4 0 = 1 log 2 ( x 2 + 7 x ) 3 1 x 2 + 7 x 2 3 x 2 + 7 x 8 0 ( x + 8 ) ( x 1 ) 0 x ( , 8 ] [ 1 , ) \begin{aligned} \log_4 \log_3 \log_2 (x^2+7x) & \ge 0 \\ \implies \log_3 \log_2 (x^2+7x) & \ge 4^0 = 1 \\ \log_2 (x^2+7x) & \ge 3^1 \\ x^2+7x & \ge 2^3 \\ \implies x^2 + 7x - 8 & \ge 0 \\ (x+8)(x-1) & \ge 0 \\ \implies x & \in (-\infty, -8] \cup [1, \infty) \end{aligned}

a b = 8 \implies \dfrac ab = \boxed{-8}

Simple and Sweet Solution..:)

Sagar Shah - 4 years, 11 months ago
Ashish Menon
Jun 26, 2016

log 4 log 3 log 2 ( x 2 + 7 x ) 0 log 4 log 3 log 2 ( x 2 + 7 x ) log 4 log 3 log 2 2 3 x 2 + 7 x 8 x 2 + 7 x 8 0 ( x + 8 ) ( x 1 ) 0 x ( , 8 ] [ 1 , ) \begin{aligned} \log_4 \log_3 \log_2 (x^2 + 7x) & \geq 0\\ \log_4 \log_3 \log_2 (x^2 + 7x) & \geq \log_4 \log_3 \log_2 2^3\\ x^2 + 7x & \geq 8\\ x^2 + 7x - 8 & \geq 0\\ (x + 8)(x - 1) & \geq 0\\ x & \in (-\infty, -8] \cup [1, \infty) \end{aligned}

But we have to also check if the argument of the given expression is more than 0 0 as it becomes negative in a contrary situation.

x 2 + 7 x > 0 x ( x + 7 ) > 0 x ( , 7 ) ( 0 , ) \begin{aligned} x^2 + 7x & > 0\\ x(x + 7) & > 0\\ x & \in (-\infty, -7) \cup (0, \infty) \end{aligned}

So, our final answer is [ ( , 8 ] [ 1 , ) ] [ ( , 7 ) ( 0 , ) ] = ( , 8 ] [ 1 , ) \color{#20A900}{\left[(-\infty , -8] \cup [1, \infty)\right]} \cap \color{#D61F06}{\left[(-\infty, -7) \cup (0, \infty)\right]}\\ = \color{#EC7300}{(-\infty, -8] \cup [1, \infty)}

So, a b = 8 1 = 8.00 \begin{aligned} \dfrac{a}{b} & = \dfrac{-8}{1}\\ & = \color{#3D99F6}{\boxed{-8.00}} \end{aligned}

Nice answer +1.. but you still need to calculate the domain

log 3 log 2 ( x 2 + 7 x ) > 0 \log_3 \log_2 (x^2+7x) > 0

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Actually i am still editing my soltion :P I didnt want to lose all my work if i make a small mistake and screen closes.

Ashish Menon - 4 years, 11 months ago

Not required at all..

log 4 log 3 log 2 ( x 2 + 7 x ) 0 \log_4 \log_3 \log_2 \left(x^2 + 7x\right) \geq 0 log 3 log 2 ( x 2 + 7 x ) 1 > 0 ( O b v i o u s l y ) \implies \log_3 \log_2 \left(x^2 + 7x\right) \geq 1>0(Obviously)

log 2 ( x 2 + 7 x ) 3 > 0 \implies \log_2 \left(x^2 + 7x\right) \geq 3>0 x 2 + 7 x 8 > 0 x^2 + 7x\geq 8>0

So we basically don't need to check for domain at all, the inequality formed at last i.e x 2 + 7 x 8 0 x^2+7x-8\geq 0 will take care.

Rishabh Jain - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...