Inequality

Algebra Level 5

Given

{ a , b , c , d > 0 a b + b c + c d + d a = 1 , \begin{cases}a,b,c,d>0\\ab+bc+cd+da=1,\end{cases}

k k is the largest number such that

a 3 + c 3 2 b d + b 3 + d 3 2 a c k . \displaystyle \frac{a^3+c^3}{2\sqrt{bd}}+\frac{b^3+d^3}{2\sqrt{ac}}\ge k.

Equality is reached when a = a eq a=a_{\text{eq}} , b = b eq b=b_{\text{eq}} , c = c eq c=c_{\text{eq}} , d = d eq d=d_{\text{eq}} .

Find a eq + b eq + c eq + d eq + k a_{\text{eq}}+b_{\text{eq}}+c_{\text{eq}}+d_{\text{eq}}+k and round it to 3 3 decimal places.


Original.


The answer is 2.500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mathh Mathh
Jul 18, 2014

First, we know that a 2 + b 2 + c 2 + d 2 a b + b c + c d + d a a^2+b^2+c^2+d^2\ge ab+bc+cd+da ( a b ) 2 + ( b c ) 2 + ( c d ) 2 + ( d a ) 2 0 \displaystyle\iff (a-b)^2+(b-c)^2+(c-d)^2+(d-a)^2\ge 0

We'll use this fact in our proof.

a 3 + c 3 2 b d + b 3 + d 3 2 a c \displaystyle \frac{a^3+c^3}{2\sqrt{bd}}+\frac{b^3+d^3}{2\sqrt{ac}} AM-GM a 3 + c 3 b + d + b 3 + d 3 a + c \displaystyle \stackrel{\text{AM-GM}}\ge\frac{a^3+c^3}{b+d}+\frac{b^3+d^3}{a+c} = a 3 b + d + b 3 a + c + c 3 b + d + d 3 a + c =\frac{a^3}{b+d}+\frac{b^3}{a+c}+\frac{c^3}{b+d}+\frac{d^3}{a+c} = a 4 a b + d a + b 4 a b + a c + c 4 b c + c d + d 4 d a + c d \displaystyle =\frac{a^4}{ab+da}+\frac{b^4}{ab+ac}+\frac{c^4}{bc+cd}+\frac{d^4}{da+cd} Cauchy-Schwarz ( a 2 + b 2 + c 2 + d 2 ) 2 2 ( a b + b c + c d + d a ) \displaystyle\stackrel{\text{Cauchy-Schwarz}}\ge \frac{(a^2+b^2+c^2+d^2)^2}{2(ab+bc+cd+da)} ( a b + b c + c d + d a ) 2 2 ( a b + b c + c d + d a ) = 1 2 \displaystyle\ge \frac{(ab+bc+cd+da)^2}{2(ab+bc+cd+da)}= \frac{1}{2}

The only possible case of equality in a 2 + b 2 + c 2 + d 2 a b + b c + c d + d a a^2+b^2+c^2+d^2\ge ab+bc+cd+da is when a = b = c = d a=b=c=d .

If a = b = c = d a=b=c=d , then a 3 + c 3 b + d + b 3 + d 3 a + c = 2 2 a 3 2 a = 2 a 2 \displaystyle \frac{a^3+c^3}{b+d}+\frac{b^3+d^3}{a+c}=2\cdot\frac{2a^3}{2a}=2a^2

And this is equal to 1 2 \frac{1}{2} if and only if a = 1 2 a=\frac{1}{2} .

Hence, k = 1 2 k=\frac{1}{2} and equality occurs if and only if a eq = b eq = c eq = d eq = 1 2 a_{\text{eq}}=b_{\text{eq}}=c_{\text{eq}}=d_{\text{eq}}=\frac{1}{2} , all adding up to 2.5 \boxed{2.5} .

This problem is original, but I thought of it while solving this . They are still very different problems with different methods, though.

My answer was also 2.5 but but the line "ROUND UPTO 3 DECIMAL PLACE" spoiled my confidence. :(

Akshay Sharma - 5 years, 5 months ago

Log in to reply

Me too XD. Nice problem by the way

Shreyash Rai - 5 years, 5 months ago

Note that ab+bc+cd+da=(a+c) (b+d)=1,so 1/(a+c)=b+d and 1/(b+d)=a+c so you can write second row expression as (a^3+c^3) (a+c)+(b^3+d^3) (b+d) >=2 (ac)^1.5x2x(ac)^0.5+2x(bd)^1.5x(bd)^0.5=4((ac)^2+(bd)^2)>=8abcd so max is reached for a=b=c=d=0.5 and k=8x0.0625=0.5 so answer is 2.5. there is no need for hard inequality as C-S,just AM-GM inequality...

Nikola Djuric - 6 years, 6 months ago

I just loved solving this question

\stackrel{{\Large\wedge\,\wedge}}{{\Large\smile}}

Nikola Djuric
Dec 7, 2014

(a^3+c^3)/2 >=(ac)^3/2 (AM-GM),similiar with b and d

That means that (a^3+c^3)/(2(bd)^0.5)+(b^3+d^3)/(2(ac)^0.5)>=

(ac)^1.5/(bd)^0.5+(bd)^1.5/(ac)=((ac)^2+(bd)^2)/(abcd)^0.5>=2(abcd)^0.5

1/4= (ab+bc+cd+da)/4>abcd (AM-GM) so abcd is max 0.0625 when a=b=c=d=0.5 so our inequality is

=2*0.0625^0.5=0.5

Equality: a=c,b=d for first use of AM-GM,ac=bd for second and a=b=c=d for last

That means a=b=c=d=0.5=k, so a+b+c+d+k=2.500

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...