Infinite Circles

Calculus Level 3

4 4 3 + 4 5 4 7 + 4 9 \large 4 - \dfrac43 + \dfrac45 - \dfrac47 + \dfrac49 - \cdots Find the value of the closed form of the above series to 3 decimal places.


The answer is 3.14159265359.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let S = 4 4 3 + 4 5 4 7 + 4 9 + S = 4 - \dfrac 43 + \dfrac 45 - \dfrac 47 + \dfrac 49 + \cdots . We note that

ln ( 1 + x 1 x ) = 2 x + 2 3 x 3 + 2 5 x 5 + 2 7 x 7 + 2 9 x 9 + ln ( 1 + i 1 i ) = 2 ( i i 3 + i 5 i 7 + i 9 + ) 2 ln ( 1 + i 1 i ) = i ( 4 4 3 + 4 5 4 7 + 4 9 + ) i S = 2 ln ( 1 + i 1 i ) = 2 ln ( ( 1 + i ) 2 ( 1 i ) ( 1 + i ) ) = 2 ln ( 2 i 2 ) = 2 ln i By Euler’s formula: e i x = cos x + i sin x = 2 ln e i π 2 = 2 i π 2 = i π S = π 3.142 \begin{aligned} \ln \left(\frac {1+x}{1-x} \right) & = 2x + \frac 23 x^3 + \frac 25x^5 + \frac 27x^7 + \frac 29 x^9 + \cdots \\ \ln \left(\frac {1+i}{1-i} \right) & = 2 \left(i - \frac i3 + \frac i5 - \frac i7 + \frac i9 + \cdots \right) \\ 2 \ln \left(\frac {1+i}{1-i} \right) & = i\left(4 - \frac 43 + \frac 45 - \frac 47 + \frac 49 + \cdots \right) \\ \implies iS & = 2 \ln \left(\frac {1+i}{1-i} \right) \\ & = 2 \ln \left(\frac {(1+i)^2}{(1-i)(1+i)} \right) \\ & = 2 \ln \left(\frac {2i}2 \right) = 2 \ln \color{#3D99F6} i & \small \color{#3D99F6} \text{By Euler's formula: }e^{ix} = \cos x + i\sin x \\ & = 2 \ln {\color{#3D99F6} e^{i \frac \pi 2}} = 2 \cdot i \frac \pi 2 = i \pi \\ \implies S & = \pi \approx \boxed{3.142} \end{aligned}

clap clap clap clap

Chris Rather not say - 3 years, 3 months ago

Log in to reply

Thanks. Glad that you like it.

Chew-Seong Cheong - 3 years, 3 months ago

Use the sum π 4 = 1 1 3 + 1 5 1 7 + 1 9 . . . \frac { \pi }{ 4 } =1-\frac { 1 }{ 3 } +\frac { 1 }{ 5 } -\frac { 1 }{ 7 } +\frac { 1 }{ 9 } - ... then multiply both sides by 4 to get π = 4 ( 1 1 3 + 1 5 1 7 + 1 9 . . . ) \pi =4(1-\frac { 1 }{ 3 } +\frac { 1 }{ 5 } -\frac { 1 }{ 7 } +\frac { 1 }{ 9 } - ...) then distribute the four to get π = 4 4 3 + 4 5 4 7 + 4 9 . . . \pi =4-\frac { 4 }{ 3 } +\frac { 4 }{ 5 } -\frac { 4 }{ 7 } +\frac { 4 }{ 9 } -...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...