Infinite Cosine Series

Geometry Level 5

cos ( θ ) 5 + 2 cos ( 2 θ ) 25 + 3 cos ( 3 θ ) 125 + 4 cos ( 4 θ ) 625 + 5 cos ( 5 θ ) 3125 + \dfrac{\cos(\theta)}{5}+\dfrac{2\cos (2\theta)}{25}+\dfrac{3\cos (3\theta)}{125}+\dfrac{4\cos (4\theta)}{625}+\dfrac{5\cos (5\theta)}{3125}+\cdots

Let θ \theta be an acute angle with cos θ = 7 10 \cos\theta = \dfrac{7}{10} . If the value of the series above can be expressed as m n \dfrac mn , where m m and n n are coprime positive integers, find the value of m + n m+n .


The answer is 402.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pedro Arantes
Nov 18, 2015

Let S = k = 1 k cos ( k θ ) 5 k S =\displaystyle \sum _{k=1} ^{\infty} \dfrac{k\cos(k\theta)}{5^k} .

Integrating S S , in terms of θ \theta , leads us to:

S d θ = k = 1 sin ( k θ ) 5 k = 1 2 i k = 1 [ ( e i θ 5 ) k ( e i θ 5 ) k ] = 1 2 i ( e i θ 5 1 e i θ 5 e i θ 5 1 e i θ 5 ) \int S d\theta =\displaystyle \sum _{k=1} ^{\infty} \dfrac{\sin(k\theta)}{5^k} = \dfrac{1}{2i} \sum _{k=1} ^{\infty} \left[ \left( \dfrac{e^{i\theta}}{5} \right)^k -\left( \dfrac{e^{-i\theta}}{5} \right)^k \right] = \dfrac{1}{2i} \left( \dfrac{\dfrac{e^{i\theta}}{5}}{1 - \dfrac{e^{i\theta}}{5}} - \dfrac{\dfrac{e^{-i\theta}}{5}}{1 - \dfrac{e^{-i\theta}}{5}} \right)

(The last term above was given by the infinite geometric series' formula.)

Rearranging the last term above, we have:

S d θ = 1 2 i ( e i θ 5 1 e i θ 5 e i θ 5 1 e i θ 5 ) = 5 sin ( θ ) 26 10 cos ( θ ) \int S d\theta = \dfrac{1}{2i} \left( \dfrac{\dfrac{e^{i\theta}}{5}}{1 - \dfrac{e^{i\theta}}{5}} - \dfrac{\dfrac{e^{-i\theta}}{5}}{1 - \dfrac{e^{-i\theta}}{5}} \right) = \dfrac{5\sin(\theta)}{26 - 10\cos(\theta)}

Differentiating both sides:

S = 5 ( 13 cos ( θ ) 5 ) 2 ( 13 5 cos ( θ ) ) 2 S = \dfrac{5(13\cos(\theta) - 5)}{2(13-5\cos(\theta))^2}

Given that cos ( θ ) = 7 10 \cos(\theta) = \dfrac{7}{10} , then S = m n = 41 361 . S = \dfrac{m}{n} = \dfrac{41}{361}.

Finally, m + n = 41 + 361 = 402 m+n = 41 + 361 = \boxed{402}

Let S = n = 1 n cos ( n θ ) 5 n S=\displaystyle \sum_{n=1}^{\infty} \dfrac{n \cos(n\theta)}{5^n} . Now, let w = n = 1 n ( e i θ ) n 5 n w=\displaystyle \sum_{n=1}^{\infty} \dfrac{n (e^{i\theta})^n}{5^n} . Then S = Re ( w ) S=\text{Re}(w) . Let's find w w :

w = n = 1 n ( e i θ 5 ) n w=\displaystyle \sum_{n=1}^{\infty} n\left(\dfrac{e^{i\theta}}{5}\right)^n

Use the formula for an arithmetic-geometric sum: n = 1 n x n = x ( 1 x ) 2 \sum_{n=1}^{\infty} nx^n=\frac{x}{(1-x)^2} for x < 1 |x|<1

w = e i θ 5 ( 1 e i θ 5 ) 2 = 5 e i θ ( 5 e i θ ) 2 = 5 e i θ e i θ ( 5 e i θ / 2 e i θ / 2 ) 2 = 5 25 e i θ 10 + e i θ w=\dfrac{\dfrac{e^{i\theta}}{5}}{\left(1-\dfrac{e^{i\theta}}{5}\right)^2}=\dfrac{5e^{i\theta}}{(5-e^{i\theta})^2}=\dfrac{5e^{i\theta}}{e^{i\theta}(5e^{-i\theta/2}-e^{i\theta/2})^2}=\dfrac{5}{25e^{-i\theta}-10+e^{i\theta}}

w = 5 26 cos ( θ ) 10 24 i sin ( θ ) = 5 ( 13 cos ( θ ) 5 + 12 i sin ( θ ) ) 2 ( ( 13 cos ( θ ) 5 ) 2 + ( 12 sin ( θ ) ) 2 ) = 5 ( 13 cos ( θ ) 5 + 12 i sin ( θ ) ) 2 ( 13 5 cos ( θ ) ) 2 w=\dfrac{5}{26\cos(\theta)-10-24i\sin(\theta)}=\dfrac{5(13\cos(\theta)-5+12i\sin(\theta))}{2((13\cos(\theta)-5)^2+(12\sin(\theta))^2)}=\dfrac{5(13\cos(\theta)-5+12i\sin(\theta))}{2(13-5\cos(\theta))^2}

Finally, S = Re ( w ) = 5 ( 13 cos ( θ ) 5 ) 2 ( 13 5 cos ( θ ) ) 2 S=\text{Re}(w)=\dfrac{5(13\cos(\theta)-5)}{2(13-5\cos(\theta))^2} .

Substituting cos ( θ ) = 7 10 \cos(\theta)=\dfrac{7}{10} we get S = 41 361 S=\dfrac{41}{361} . So the answer is 41 + 361 = 402 41+361=\boxed{402} .

did the same way

Samarth Agarwal - 5 years, 6 months ago
Shaurya Gupta
Nov 19, 2015

S ( x ) = x ( 1 x ) 2 = x + 2 x 2 + 3 x 3 + . . . S(x) = x(1-x)^{-2} = x+2x^2+3x^3+...
So the required sum will be real part of S ( e i θ 5 ) = 41 361 , cos θ = 7 10 S(\frac{e^{i\theta}}{5})={41 \over 361}, \cos \theta = \frac{7}{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...