5 cos ( θ ) + 2 5 2 cos ( 2 θ ) + 1 2 5 3 cos ( 3 θ ) + 6 2 5 4 cos ( 4 θ ) + 3 1 2 5 5 cos ( 5 θ ) + ⋯
Let θ be an acute angle with cos θ = 1 0 7 . If the value of the series above can be expressed as n m , where m and n are coprime positive integers, find the value of m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let S = n = 1 ∑ ∞ 5 n n cos ( n θ ) . Now, let w = n = 1 ∑ ∞ 5 n n ( e i θ ) n . Then S = Re ( w ) . Let's find w :
w = n = 1 ∑ ∞ n ( 5 e i θ ) n
Use the formula for an arithmetic-geometric sum: ∑ n = 1 ∞ n x n = ( 1 − x ) 2 x for ∣ x ∣ < 1
w = ( 1 − 5 e i θ ) 2 5 e i θ = ( 5 − e i θ ) 2 5 e i θ = e i θ ( 5 e − i θ / 2 − e i θ / 2 ) 2 5 e i θ = 2 5 e − i θ − 1 0 + e i θ 5
w = 2 6 cos ( θ ) − 1 0 − 2 4 i sin ( θ ) 5 = 2 ( ( 1 3 cos ( θ ) − 5 ) 2 + ( 1 2 sin ( θ ) ) 2 ) 5 ( 1 3 cos ( θ ) − 5 + 1 2 i sin ( θ ) ) = 2 ( 1 3 − 5 cos ( θ ) ) 2 5 ( 1 3 cos ( θ ) − 5 + 1 2 i sin ( θ ) )
Finally, S = Re ( w ) = 2 ( 1 3 − 5 cos ( θ ) ) 2 5 ( 1 3 cos ( θ ) − 5 ) .
Substituting cos ( θ ) = 1 0 7 we get S = 3 6 1 4 1 . So the answer is 4 1 + 3 6 1 = 4 0 2 .
did the same way
S
(
x
)
=
x
(
1
−
x
)
−
2
=
x
+
2
x
2
+
3
x
3
+
.
.
.
So the required sum will be real part of
S
(
5
e
i
θ
)
=
3
6
1
4
1
,
cos
θ
=
1
0
7
.
Problem Loading...
Note Loading...
Set Loading...
Let S = k = 1 ∑ ∞ 5 k k cos ( k θ ) .
Integrating S , in terms of θ , leads us to:
∫ S d θ = k = 1 ∑ ∞ 5 k sin ( k θ ) = 2 i 1 k = 1 ∑ ∞ [ ( 5 e i θ ) k − ( 5 e − i θ ) k ] = 2 i 1 ⎝ ⎜ ⎜ ⎛ 1 − 5 e i θ 5 e i θ − 1 − 5 e − i θ 5 e − i θ ⎠ ⎟ ⎟ ⎞
(The last term above was given by the infinite geometric series' formula.)
Rearranging the last term above, we have:
∫ S d θ = 2 i 1 ⎝ ⎜ ⎜ ⎛ 1 − 5 e i θ 5 e i θ − 1 − 5 e − i θ 5 e − i θ ⎠ ⎟ ⎟ ⎞ = 2 6 − 1 0 cos ( θ ) 5 sin ( θ )
Differentiating both sides:
S = 2 ( 1 3 − 5 cos ( θ ) ) 2 5 ( 1 3 cos ( θ ) − 5 )
Given that cos ( θ ) = 1 0 7 , then S = n m = 3 6 1 4 1 .
Finally, m + n = 4 1 + 3 6 1 = 4 0 2