Infinite Factorial Series

Calculus Level 1

What is the answer to the infinite sum below?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

n = 1 n ( n + 1 ) ! = n = 1 ( n + 1 ) 1 ( n + 1 ) ! = n = 1 ( n + 1 ( n + 1 ) ! 1 ( n + 1 ) ! ) = n = 1 ( 1 n ! 1 ( n + 1 ) ! ) = 1 \displaystyle \sum_{n=1}^{\infty} \dfrac{n}{(n + 1)!} = \sum_{n=1}^{\infty} \dfrac{(n + 1) - 1}{(n + 1)!} = \sum_{n=1}^{\infty} \left(\dfrac{n + 1}{(n + 1)!} - \dfrac{1}{(n + 1)!} \right) = \sum_{n=1}^{\infty} \left(\dfrac{1}{n!} - \dfrac{1}{(n + 1)!}\right) = \boxed{1} ,

as the last sum telescopes so that only the first element of the first term remains.

Joseph Newton
Jun 9, 2018

n = 0 x n n ! = e x n = 1 x n n ! = e x x 0 0 ! n = 0 x n + 1 ( n + 1 ) ! = e x 1 n = 0 x n ( n + 1 ) ! = e x 1 x n = 1 x n ( n + 1 ) ! = e x 1 x x 0 ( 0 + 1 ) ! d d x ( n = 1 x n ( n + 1 ) ! ) = d d x ( e x 1 x 1 ) n = 1 n x n 1 ( n + 1 ) ! = x e x ( e x 1 ) x 2 let x = 1 : n = 1 n ( 1 ) n 1 ( n + 1 ) ! = 1 e 1 ( e 1 1 ) 1 2 n = 1 n ( n + 1 ) ! = 1 \begin{aligned}\sum_{n=0}^\infty \frac{x^n}{n!}&=e^x\\ \sum_{n=1}^\infty \frac{x^n}{n!}&=e^x-\frac{x^0}{0!}\\ \sum_{n=0}^\infty \frac{x^{n+1}}{(n+1)!}&=e^x-1\\ \sum_{n=0}^\infty \frac{x^n}{(n+1)!}&=\frac{e^x-1}{x}\\ \sum_{n=1}^\infty \frac{x^n}{(n+1)!}&=\frac{e^x-1}{x}-\frac{x^0}{(0+1)!}\\ \frac{d}{dx}\left(\sum_{n=1}^\infty \frac{x^n}{(n+1)!}\right)&=\frac{d}{dx}\left(\frac{e^x-1}{x}-1\right)\\ \sum_{n=1}^\infty \frac{nx^{n-1}}{(n+1)!}&=\frac{xe^x-(e^x-1)}{x^2}\\ \underline{\text{let }x=1:}\\ \sum_{n=1}^\infty \frac{n(1)^{n-1}}{(n+1)!}&=\frac{1e^1-(e^1-1)}{1^2}\\ \sum_{n=1}^\infty \frac{n}{(n+1)!}&=1\quad\blacksquare\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...