Infinite Factorial Summation with a Twist

Calculus Level 4

1 + 1 + 1 1 ! 2 + 1 + 1 1 ! + 1 2 ! 2 2 + 1 + 1 1 ! + 1 2 ! + 1 3 ! 2 3 + \large 1 + \dfrac{1 + \frac{1}{1!}}{2} + \dfrac{1 + \frac{1}{1!} + \frac{1}{2!}}{2^2} + \dfrac{1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!}}{2^3} + \ldots

If the above series can be expressed as S S , find 100 S \big \lfloor 100S \rfloor .

Try more problems of this type here .
Try my set .


The answer is 329.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajen Kapur
Jun 17, 2015

Collecting terms the summation in this way: 1 + 1 2 + 1 4 + 1 8 + . . . . 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . . + 1 1 ! [ 1 2 + 1 4 + 1 8 + . . . ] + \frac{1}{1!}\large [ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . ] + 1 2 ! [ 1 4 + 1 8 + 1 16 + . . . ] + \frac{1}{2!} \large [\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + . . . ] ans so on. = 2 + 1. 1 1 ! + 1 2 . 1 2 ! + 1 4 . 1 3 ! + . . . = 2 + 1.\frac{1}{1!} + \frac{1}{2} . \frac{1}{2!} + \frac{1}{4} . \frac{1}{3!} + . . . , = 2. [ 1 + 1 2 + 1 2 ! . 1 2 2 + . . . . ] = 2. \large [ 1 + \frac{1}{2} + \frac{1}{2!} . \frac{1}{2^2} + . . . . ] which equals 2 e^0.5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...