Infinite factorial summation

Calculus Level 3

1 3 ! + 2 5 ! + 3 7 ! + 4 9 ! + \large \dfrac{1}{3 !} + \dfrac{2}{5 !} + \dfrac{3}{7 !} + \dfrac{4}{9 !} + \ldots

If the series above can be expressed as S S , find the value of 1000 S \big \lfloor 1000S \rfloor .


The answer is 183.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This series can be written as

S = 1 2 ( 2 3 ! + 4 5 ! + 6 7 ! + 8 9 ! + . . . . ) = S = \dfrac{1}{2}\left(\dfrac{2}{3!} + \dfrac{4}{5!} + \dfrac{6}{7!} + \dfrac{8}{9!} + ....\right) =

1 2 ( 3 1 3 ! + 5 1 5 ! + 7 1 7 ! + 9 1 9 ! + . . . . ) = \dfrac{1}{2}\left(\dfrac{3 - 1}{3!} + \dfrac{5 - 1}{5!} + \dfrac{7 - 1}{7!} + \dfrac{9 - 1}{9!} + ....\right) =

1 2 ( n = 1 2 n + 1 ( 2 n + 1 ) ! n = 1 1 ( 2 n + 1 ) ! ) = \dfrac{1}{2}\left(\displaystyle\sum_{n=1}^{\infty} \dfrac{2n + 1}{(2n + 1)!} - \sum_{n=1}^{\infty} \dfrac{1}{(2n + 1)!}\right) =

1 2 ( n = 1 1 ( 2 n ) ! n = 1 1 ( 2 n + 1 ) ! ) = \dfrac{1}{2}\left(\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{(2n)!} - \sum_{n=1}^{\infty} \dfrac{1}{(2n + 1)!}\right) =

1 2 n = 2 ( 1 ) n n ! = 1 2 ( ( n = 0 ( 1 ) n n ! ) 1 0 ! + 1 1 ! ) = 1 2 ( e 1 1 + 1 ) = 1 2 e . \dfrac{1}{2}\displaystyle\sum_{n=2}^{\infty} \dfrac{(-1)^{n}}{n!} = \dfrac{1}{2}\left(\left(\sum_{n=0}^{\infty} \dfrac{(-1)^{n}}{n!}\right) - \dfrac{1}{0!} + \dfrac{1}{1!}\right) = \dfrac{1}{2}(e^{-1} - 1 + 1) = \dfrac{1}{2e}.

Thus 1000 S = 500 e = 183.9397... = 183 . \lfloor 1000S \rfloor = \lfloor \dfrac{500}{e} \rfloor = \lfloor 183.9397... \rfloor = \boxed{183}.

Note that e x = n = 0 x n n ! . e^{x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{x^{n}}{n!}.

Beautiful solution! Bravo!

Jake Lai - 5 years, 12 months ago

Log in to reply

Thanks! Your solution is "cooler", though. :)

Brian Charlesworth - 5 years, 12 months ago

did the same way sir

Shashank Rustagi - 5 years, 12 months ago

Nice solution sir

Akram Khan - 5 years, 10 months ago
Jake Lai
Jun 15, 2015

We recall that the Maclaurin series for sinh x = n = 0 x 2 n + 1 ( 2 n + 1 ) ! \displaystyle \sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} . Thus,

n = 0 2 n x 2 n 1 ( 2 n + 1 ) ! = d d x n = 0 x 2 n ( 2 n + 1 ) ! = d d x sinh x x = x cosh x sinh x x 2 \sum_{n=0}^{\infty} \frac{2nx^{2n-1}}{(2n+1)!} = \frac{d}{dx} \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+1)!} = \frac{d}{dx} \frac{\sinh x}{x} = \frac{x\cosh x - \sinh x}{x^{2}}

from the product rule and that d d x sinh x = cosh x \frac{d}{dx} \sinh x = \cosh x .

Since our desired sum matches half our obtained series at x = 1 x = 1 , we thus get

S = n = 0 n ( 2 n + 1 ) ! = x cosh x sinh x 2 x 2 x = 1 = cosh 1 sinh 1 2 = 1 2 e S = \sum_{n=0}^{\infty} \frac{n}{(2n+1)!} = \left. \frac{x\cosh x - \sinh x}{2x^{2}} \right|_{x=1} = \frac{\cosh 1 - \sinh 1}{2} = \boxed{\frac{1}{2e}}

Of course, this requires thorough prior knowledge of the hyperbolic trigonometric functions, such as that

sinh x = e x e x 2 ; cosh x = e x + e x 2 \sinh x = \frac{e^{x}-e^{-x}}{2} ; \quad \cosh x = \frac{e^{x}+e^{-x}}{2}

Jake Lai - 5 years, 12 months ago

Log in to reply

You have mistyped sinh(x) and cosh(x) in your last comment. It should be e^(x)-e^(-x) all over 2 for sinh(x) and e^(x)+e(-x) all over 2 for cosh(x)

John Doe - 5 years, 12 months ago

Log in to reply

Nice catch, thank you!

Jake Lai - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...